Ex 7.1,7 - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.1, 7 Using Binomial Theorem, evaluate (102)5 (102)5 = (100 + 2)5 We know that (a + b)n = nC0 an + nC1 an – 1 b1 + nC2 an – 2 b2 + ….…. + nCn – 1 a1 bn – 1 + nCn bn Hence (a + b)5 = = 5!/0!(5 − 0)! a5 × 1 + 5!/1!(5 − 1)! a4 b1 + 5!/2!(5 − 2)! a3 b2 + 5!/3!(5 − 3)! a2b3 + 5!/4!(5 − 4)! a b4 + 5!/5!(5 − 5)! b5 × 1 = 5!/(0! × 5!) a5 + 5!/(1! × 4!) a4 b + 5!/(2! 3!) a3 b2 + 5!/(3! 2!) a2b3 + 5!/(4! 1!) ab4 + 5!/(5! 0!) b5 = 5!/5! a5 + (5 × 4!)/4! a4 b + (5 × 4 × 3!)/(2! 3!) a3 b2 + (5 × 4 × 3!)/(2 × 1 × 3!) a3b2 + (5 × 4!)/4! ab4 + 5!/(5! ) b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 We need to find (100 + 2)5 Putting a = 100 & b = 2 (100 + 2)5 = (100)5 + 5 (100)4 (2) + 10 (100)3 (2)2 + 10 (100)2 (2)3 + 5(100) (2)4 + (2)5 (102)5 = 10000000000 + 10 (100000000) + 40(100000) (8) + 5 (100) (16) + 32 = 10000000000 + 1000000000 + 40000000 + 8000 + 32 = 11040808032 Hence, (102)5 = 11040808032
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo