Check sibling questions


Transcript

Ex 7.1, 2 Expand the expression (2/๐‘ฅโˆ’๐‘ฅ/2)^5 We know that (a + b)n = nC0 an + nC1 an โ€“ 1 b1 + nC2 an โ€“ 2 b2 + โ€ฆ.โ€ฆ. + nCn โ€“ 1 a1 bn โ€“ 1 + nCn bn Hence (a + b)5 = = 5!/0!( 5 โˆ’ 0)! a5 + 5!/1!( 5 โˆ’ 1)! a4 b1 + 5!/2!( 5 โˆ’ 2)! a3 b2 + 5!/3!( 5 โˆ’ 3)! a2b3 + 5!/4!( 5 โˆ’ 4)! a b4 + 5!/5!( 5 โˆ’5)! b5 = 5!/(0! ร— 5!) a5 + 5!/(1! ร— 4!) a4 b + 5!/(2! 3!) a3 b2 + 5!/(3! 2!) a2b3 + 5!/(4! 1!) a b4 + 5!/(5! 0!) b5 = 5!/5! a5 + (5 ร— 4!)/4! a4 b + (5 ร— 4 ร— 3!)/(2! 3!) a3 b2 + (5 ร— 4 ร— 3!)/(2 ร— 1 ร—3!) a3b2 + (5 ร— 4 ร— 3!)/(3! ร—1 ร—3!) a2b3 + (5 ร— 4!)/4! ab4 + 5!/(5! ) b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 We need to find (2/๐‘ฅโˆ’๐‘ฅ/2)^5i.e. (๐Ÿ/๐’™+((โˆ’๐’™)/๐Ÿ))^๐Ÿ“ Putting a = 2/๐‘ฅ & b = (โˆ’๐‘ฅ)/2 (2/๐‘ฅ+((โˆ’๐‘ฅ)/2))^5 = (2/๐‘ฅ)^5 + 5(2/๐‘ฅ)^4 ((โˆ’๐‘ฅ)/2)+ 10 (2/๐‘ฅ)^3 ((โˆ’๐‘ฅ)/2)^2 + 10 (2/๐‘ฅ)^2 ((โˆ’๐‘ฅ)/2)^3 + 5(2/๐‘ฅ) ((โˆ’๐‘ฅ)/2)^4 +((โˆ’๐‘ฅ)/2)^5 = 32/๐‘ฅ5 โ€“ 5 (2/๐‘ฅ)^4 (๐‘ฅ/2) + 10(2/๐‘ฅ)^3 (๐‘ฅ/2)^2โ€“ 10 (2/๐‘ฅ)^2 (๐‘ฅ/2)^3 + 5 (2/๐‘ฅ) (๐‘ฅ/2)^4 + ((โˆ’๐‘ฅ)/2)^5 = 32/x5 โ€“ 5 (2/๐‘ฅ)^3 + 10(2/๐‘ฅ) โ€“ 10 (๐‘ฅ/2) + 5 (๐‘ฅ/2)^3โ€“ ๐‘ฅ5/32 = ๐Ÿ‘๐Ÿ/๐’™๐Ÿ“ โ€“ ๐Ÿ’๐ŸŽ/๐’™๐Ÿ‘ + ๐Ÿ๐ŸŽ/๐’™ โ€“ 5๐’™ + ๐Ÿ“๐’™๐Ÿ‘/๐Ÿ– โ€“ ๐’™๐Ÿ“/๐Ÿ‘๐Ÿ

  1. Chapter 7 Class 11 Binomial Theorem
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo