Ex 7.1,2 - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.1, 2 Expand the expression (2/๐ฅโ๐ฅ/2)^5 We know that (a + b)n = nC0 an + nC1 an โ 1 b1 + nC2 an โ 2 b2 + โฆ.โฆ. + nCn โ 1 a1 bn โ 1 + nCn bn Hence (a + b)5 = = 5!/0!( 5 โ 0)! a5 + 5!/1!( 5 โ 1)! a4 b1 + 5!/2!( 5 โ 2)! a3 b2 + 5!/3!( 5 โ 3)! a2b3 + 5!/4!( 5 โ 4)! a b4 + 5!/5!( 5 โ5)! b5 = 5!/(0! ร 5!) a5 + 5!/(1! ร 4!) a4 b + 5!/(2! 3!) a3 b2 + 5!/(3! 2!) a2b3 + 5!/(4! 1!) a b4 + 5!/(5! 0!) b5 = 5!/5! a5 + (5 ร 4!)/4! a4 b + (5 ร 4 ร 3!)/(2! 3!) a3 b2 + (5 ร 4 ร 3!)/(2 ร 1 ร3!) a3b2 + (5 ร 4 ร 3!)/(3! ร1 ร3!) a2b3 + (5 ร 4!)/4! ab4 + 5!/(5! ) b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 We need to find (2/๐ฅโ๐ฅ/2)^5i.e. (๐/๐+((โ๐)/๐))^๐ Putting a = 2/๐ฅ & b = (โ๐ฅ)/2 (2/๐ฅ+((โ๐ฅ)/2))^5 = (2/๐ฅ)^5 + 5(2/๐ฅ)^4 ((โ๐ฅ)/2)+ 10 (2/๐ฅ)^3 ((โ๐ฅ)/2)^2 + 10 (2/๐ฅ)^2 ((โ๐ฅ)/2)^3 + 5(2/๐ฅ) ((โ๐ฅ)/2)^4 +((โ๐ฅ)/2)^5 = 32/๐ฅ5 โ 5 (2/๐ฅ)^4 (๐ฅ/2) + 10(2/๐ฅ)^3 (๐ฅ/2)^2โ 10 (2/๐ฅ)^2 (๐ฅ/2)^3 + 5 (2/๐ฅ) (๐ฅ/2)^4 + ((โ๐ฅ)/2)^5 = 32/x5 โ 5 (2/๐ฅ)^3 + 10(2/๐ฅ) โ 10 (๐ฅ/2) + 5 (๐ฅ/2)^3โ ๐ฅ5/32 = ๐๐/๐๐ โ ๐๐/๐๐ + ๐๐/๐ โ 5๐ + ๐๐๐/๐ โ ๐๐/๐๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo