Check sibling questions

 

 

 

 

 

 

 


Transcript

Ex 4.1, 1 Check whether the following are quadratic equations : (i) (๐‘ฅ+1)^2 = 2(x โ€“ 3) (๐‘ฅ+1)^2 = 2(x โ€“ 3) ๐’™๐Ÿ + ๐Ÿ + ๐Ÿ๐’™ = ๐Ÿ๐’™ โ€“ ๐Ÿ” ๐‘ฅ2 + 1+ 2๐‘ฅ โ€“ 2๐‘ฅ + 6 = 0 ๐‘ฅ2 + 1 +6 = 0 ๐‘ฅ2 + 7 = 0 ๐’™๐Ÿ + ๐ŸŽ๐’™ + ๐Ÿ• = ๐ŸŽ Since , it is of the form ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ =0 Where ๐‘Ž = 1, ๐‘ = 0, ๐‘ = 7 Hence, it is a quadratic equation Ex 4.1, 1 Check whether the following are quadratic equations : (ii) x2 โ€“ 2x = (-2) (3 โ€“ x) x2 โ€“ 2x = (-2) (3 โ€“ x) x2 โ€“ 2x = (-2)3 โ€“ (โ€“2)x x2 โ€“ 2x = โ€“6 + 2x x2 โ€“ 2x โ€“ 2x + 6 = 0 x2 โ€“ 4x + 6 = 0 It is the form of ax2 + bx + c = 0 Where a = 1, b = โ€“ 4 , c = 6 Hence, it is a quadratic equation . Ex 4.1, 1 Check whether the following are quadratic equations : (iii) (x โ€“ 2)(x + 1) = (x โ€“ 1)(x + 3) (๐‘ฅ โ€“ 2)(๐‘ฅ + 1)= (๐‘ฅ โ€“ 1)(๐‘ฅ + 3) ๐‘ฅ (๐‘ฅ + 1) โ€“ 2 (๐‘ฅ + 1) = ๐‘ฅ (๐‘ฅ + 3) โ€“ 1 (๐‘ฅ + 3) ๐’™๐Ÿ + ๐’™ โ€“ ๐Ÿ๐’™ โ€“ ๐Ÿ = ๐’™๐Ÿ + ๐Ÿ‘๐’™ โ€“ ๐’™ โ€“ ๐Ÿ‘ ๐‘ฅ2 + ๐‘ฅ โ€“ 2๐‘ฅ โ€“ 2 โ€“ ๐‘ฅ2 โ€“ 3๐‘ฅ + ๐‘ฅ + 3 = 0 (๐‘ฅ2 โ€“ ๐‘ฅ2 ) + (๐‘ฅ โ€“ 2๐‘ฅ โ€“ 3๐‘ฅ + ๐‘ฅ ) โ€“ 2 + 3 = 0 0 โ€“ 3๐‘ฅ + 1 = 0 โ€“ ๐Ÿ‘๐’™ + ๐Ÿ = 0 Since , highest power is 1 not 2, It is not in the form of ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ =0 Hence, it is not a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (iv) (x โ€“ 3)(2x +1) = x(x + 5) (๐‘ฅ โ€“ 3) (2๐‘ฅ + 1) = ๐‘ฅ (๐‘ฅ + 5) ๐‘ฅ (2๐‘ฅ + 1) โ€“ 3(2๐‘ฅ + 1) = ๐‘ฅ (๐‘ฅ + 5) ๐Ÿ๐’™๐Ÿ + ๐’™ โ€“ ๐Ÿ”๐’™ โˆ’๐Ÿ‘ = ๐’™๐Ÿ + ๐Ÿ“๐’™ 2๐‘ฅ2 + ๐‘ฅ โ€“ 6๐‘ฅ โ€“ 3 โ€“ ๐‘ฅ2 โ€“ 5๐‘ฅ = 0 2๐‘ฅ2 โ€“ ๐‘ฅ2 +๐‘ฅ โ€“ 6๐‘ฅ โ€“ 5๐‘ฅ โ€“ 3 = 0 ๐’™๐Ÿ โ€“ ๐Ÿ๐ŸŽ๐’™ โ€“ ๐Ÿ‘ = ๐ŸŽ Since, the equation is of the form ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ = 0 Where, a = 1, b = โ€“ 10, c = โ€“ 3 Hence it is a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (v) (2x โ€“ 1)(x โ€“ 3) = (x + 5)(x โ€“ 1) (2๐‘ฅ โ€“ 1)(๐‘ฅ โ€“ 3)= (๐‘ฅ + 5)(๐‘ฅ โ€“ 1) 2๐‘ฅ (๐‘ฅ โ€“ 3) โ€“ 1 (๐‘ฅ โ€“ 3) = ๐‘ฅ (๐‘ฅ โ€“ 1) + 5 (๐‘ฅ โ€“ 1) ๐Ÿ๐’™๐Ÿ โ€“ ๐Ÿ”๐’™ โ€“ ๐’™ + ๐Ÿ‘ = ๐’™๐Ÿ โ€“ ๐’™ + ๐Ÿ“๐’™ โ€“ ๐Ÿ“ 2๐‘ฅ2 โ€“ 6๐‘ฅ โ€“ ๐‘ฅ + 3 โ€“ ๐‘ฅ2 + ๐‘ฅ โ€“ 5๐‘ฅ + 5 = 0 2๐‘ฅ2 โ€“ ๐‘ฅ2 โ€“ 6๐‘ฅ โ€“ ๐‘ฅ + ๐‘ฅ โ€“ 5๐‘ฅ + 3 + 5 = 0 ๐’™๐Ÿ โ€“ ๐Ÿ๐Ÿ๐’™ + ๐Ÿ– = ๐ŸŽ Since it is of the form ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ =0 Where a = 1, b = โ€“ 11, c = 8 Hence it is a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (vi) x2 + 3x + 1 = (x โ€“ 2)2 ๐‘ฅ2 + 3๐‘ฅ + 1 = (๐‘ฅ โ€“ 2)^2 ๐‘ฅ2 +3๐‘ฅ +1 = ๐‘ฅ2 + 4 โ€“ 4๐‘ฅ ๐‘ฅ2 + 3๐‘ฅ + 1 โ€“ ๐‘ฅ2 โ€“ 4+ 4๐‘ฅ= 0 ๐‘ฅ2 โ€“ ๐‘ฅ2 + 3๐‘ฅ + 4๐‘ฅ + 1 โ€“ 4 = 0 0 + 7๐‘ฅ โ€“ 3 = 0 ๐Ÿ•๐’™ โ€“ ๐Ÿ‘ = ๐ŸŽ Since , highest power is 1 not 2, It is not in the form of ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ =0 Hence, it is not a quadratic equation. Ex 4.1, 1 Check whether the following are quadratic equations : (vii) (x + 2)3 = 2x (x2 โ€“ 1) (x + 2)3 = 2x (x2 โ€“ 1) x3 + 23 + 3 ร— ๐‘ฅ ร— 2(๐‘ฅ+2)=2๐‘ฅ (x2 โ€“ 1) ๐’™๐Ÿ‘ +๐Ÿ–+๐Ÿ”๐’™(๐’™+๐Ÿ)=๐Ÿ๐’™๐Ÿ‘โˆ’๐Ÿ๐’™ ๐‘ฅ2 + 8 + 6๐‘ฅ2 + 12๐‘ฅ = 2๐‘ฅ3 โ€“ 2๐‘ฅ ๐‘ฅ3 + 8 + 6๐‘ฅ2 + 12๐‘ฅ โ€“ 2๐‘ฅ3 + 2๐‘ฅ = 0 ๐‘ฅ3 โ€“ 2๐‘ฅ3 + 6๐‘ฅ2 + 12๐‘ฅ + 2๐‘ฅ + 8 = 0 โ€“ ๐’™๐Ÿ‘ + ๐Ÿ”๐’™๐Ÿ +๐Ÿ๐Ÿ’๐’™ + ๐Ÿ– = ๐ŸŽ Since highest power is 3 and not 2, It is not in the form of ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ =0 Hence, it is not a quadratic equation Ex 4.1, 1 Check whether the following are quadratic equations : (viii) x3 โ€“ 4x2 โ€“ x + 1 = (x โ€“ 2)3 ๐‘ฅ3 โ€“ 4๐‘ฅ2 โ€“ ๐‘ฅ+ 1 = (๐‘ฅ โ€“ 2)^3 ๐‘ฅ3 โ€“ 4๐‘ฅ2 โ€“ ๐‘ฅ+1 = ๐‘ฅ3 โ€“23 โˆ’3ร—๐‘ฅร—2(xโˆ’2) ๐’™๐Ÿ‘ โ€“ ๐Ÿ’๐’™๐Ÿ โ€“ ๐’™+๐Ÿ = ๐’™๐Ÿ‘ โ€“ ๐Ÿ– โ€“ ๐Ÿ”๐’™ (๐’™ โ€“ ๐Ÿ) ๐‘ฅ3 โ€“ 4๐‘ฅ2 โ€“ ๐‘ฅ +1 = ๐‘ฅ3 โ€“ 8 โ€“ 6๐‘ฅ2 + 12 ๐‘ฅ ๐‘ฅ3 โ€“ 4๐‘ฅ2 โ€“ ๐‘ฅ + 1 โ€“ ๐‘ฅ3 + 8 + 6๐‘ฅ2 โ€“ 12๐‘ฅ = 0 ๐‘ฅ3 โ€“ ๐‘ฅ3 โ€“ 4๐‘ฅ2 + 6๐‘ฅ2 โ€“ ๐‘ฅ โ€“ 12๐‘ฅ + 1 + 8 = 0 0 + 2๐‘ฅ2 โ€“ 13๐‘ฅ + 9 = 0 ๐Ÿ๐’™๐Ÿ โ€“ ๐Ÿ๐Ÿ‘๐’™ + ๐Ÿ— = ๐ŸŽ It is of the form ax2 + bx + c = 0 Where a = 2, b = โ€“ 13 and c = 9 Hence, it is a quadratic equation

  1. Chapter 4 Class 10 Quadratic Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo