Question 4 - Section Formula in 3D Geometry - Chapter 11 Class 11 - Intro to Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 4 Using section formula, show that the points A (2, –3, 4), B (–1, 2, 1) and C (0, 1/3,2) are collinear. Given Points A (2, –3, 4) , B (–1, 2, 1) & C (0, 1/3 ,2) Point A, B & C are collinear if , point C divides AB in some ratio externally or internally. We know that Co-ordinate of point P(x, y ,z) that divides line segment joining (x1, y1, z1) & (x2, y2, z2) in ration m : n is (x, y ,z) = ((mx2 + nx1)/(m + n),(my2 + ny1)/(m + n), (〖𝑚𝑧〗_2 + 〖𝑛𝑧〗_1)/(𝑚 + 𝑛)) Here, let point C (0, 1/3 ,2) divide A(2, –3, 4), B(–1, 2, 1) in the ratio k : 1 Here, m = k , n = 1 x1 = 2, y1 = 3, z1 = 4 x2 = – 1, y2 = 2, z2 = 1 Putting values ("0, " 1/3 ", 2" ) =((k(−1) + 1(2))/(k + 1),(k(2) + 1(3))/(k + 1),(k(1) + 1(4))/(k + 1)) ("0, " 1/3 ", 2" ) =((−k + 2)/(k + 1),(2k + 3)/(k + 1),(k + 4)/(k + 1)) Comparing x – coordinate 0 = (−k + 2)/(k + 1) 0 (k + 1) = – k + 2 0 = – k + 2 – k + 2 = 0 – k = – 2 k = 2 So, k : 1 = 2 : 1 Hence point C divide line segment AB in the ratio 2 : 1 Hence points A, B & C are collinear
Section Formula in 3D Geometry
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo