Last updated at Dec. 16, 2024 by Teachoo
Question 1 Find the coordinates of the point which divides the line segment joining the points (–2, 3, 5) and (1, –4, 6) in the ratio (i) 2:3 internally. Let A be (–2, 3, 5) & B be (1, –4, 6) Let coordinate of point P be (x, y, z) that divides the line joining A & B in the ratio of 2 : 3 internally We know that Coordinate of P that divide the line segment joining A(x1, y1, z1) & B(x2, y2, z2) internally in the ratio m: n is P(x, y, z) = ((〖𝑚 𝑥〗_2+〖 𝑛 𝑥〗_1)/(𝑚 + 𝑛),(〖𝑚 𝑦〗_2 +〖 𝑛 𝑦〗_1)/(𝑚 + 𝑛),(〖𝑚 𝑧〗_(2 )+〖 𝑛 𝑧〗_1)/(𝑚 + 𝑛)) Here, x1 = – 2, y1 = 3, z1 = 5 x2 = 1, y2 = – 4, z2 = 6 & m = 2 , n = 3 Putting values (x, y, z) = ((2(1) + 3(−2))/(2+3),(2 (−4) + 3(3))/(2+ 3),(2(6) + 3(5))/(2+ 3)) = ((2 − 6)/5,(− 8 + 9)/5,(12 + 15)/( 5)) = ((−4)/( 5),1/5,27/( 5)) Thus, the required coordinate of point P is ((−𝟒)/( 𝟓),𝟏/𝟓,𝟐𝟕/( 𝟓))
Section Formula in 3D Geometry
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo