Check sibling questions

 


Transcript

Question 1 Find the coordinates of the point which divides the line segment joining the points (–2, 3, 5) and (1, –4, 6) in the ratio (i) 2:3 internally. Let A be (–2, 3, 5) & B be (1, –4, 6) Let coordinate of point P be (x, y, z) that divides the line joining A & B in the ratio of 2 : 3 internally We know that Coordinate of P that divide the line segment joining A(x1, y1, z1) & B(x2, y2, z2) internally in the ratio m: n is P(x, y, z) = ((〖𝑚 𝑥〗_2+〖 𝑛 𝑥〗_1)/(𝑚 + 𝑛),(〖𝑚 𝑦〗_2 +〖 𝑛 𝑦〗_1)/(𝑚 + 𝑛),(〖𝑚 𝑧〗_(2 )+〖 𝑛 𝑧〗_1)/(𝑚 + 𝑛)) Here, x1 = – 2, y1 = 3, z1 = 5 x2 = 1, y2 = – 4, z2 = 6 & m = 2 , n = 3 Putting values (x, y, z) = ((2(1) + 3(−2))/(2+3),(2 (−4) + 3(3))/(2+ 3),(2(6) + 3(5))/(2+ 3)) = ((2 − 6)/5,(− 8 + 9)/5,(12 + 15)/( 5)) = ((−4)/( 5),1/5,27/( 5)) Thus, the required coordinate of point P is ((−𝟒)/( 𝟓),𝟏/𝟓,𝟐𝟕/( 𝟓))

  1. Chapter 11 Class 11 - Intro to Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo