Ex 11.2, 4 - Chapter 11 Class 11 - Intro to Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 4 Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1). Let A (1, 2, 3) & B (3, 2, –1) Let point P be (x, y, z,) Let point P (x, y, z) be at equal distance from point A (1, 2, 3) & B (3, 2, – 1) i.e. PA = PB Calculating PA P (x, y, z), A (1, 2, 3) PA = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = 1, y2 = 2, z2 = 1 PA = √((1−x)2+(2−y)2+(3 −z)2) Calculating PB P (x, y, z), B (3, 4, 5) PB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = 3, y2 = 2, z2 = −1 PB = √((3−x)2+(2−y)2+(−1 −z)2) PB = √((3−x)2+(2−y)2+(−1)2(1+𝑧)2) = √((3−x)2+(2−y)2+(1+𝑧)2) Since PA = PB √((1+𝑧)2+(2−y)2+(3−x)2) = √((3−x)2+(2−y)2+(1+𝑧)2) Squaring Both sides (√((1+𝑧)2+(2−y)2+(3−x)2))^2= (√((3−x)2+(2−y)2+(1+𝑧)2))^2 (1 – x)2 + (2 – y)2 + (3 – z)2 = (3 – x)2 + (2 – y)2 + (1 + z)2 (1)2 + (x)2 – 2(1)(x) + (4)2 + (y)2 – 2(2)(y) + (3)2 + (z)2 + 2(3)(z) = (3)2 + (x)2 – 2(3)(x) + (2)2 + (y)2 – 2(2)(y) + (1)2 + (z)2 + 2(1)(z) 1 + x2 – 2x + 42 + y2 – 4y + 9 + z2 – 6z = 9 + x2 – 6x + 4 + y2 – 4y + 1 + z2 + 2z – 2x – 4y – 6z + 14 = (x2 + y2 + z2) – (x2 + y2 – z2) – 6x – 4y + 2z + 14 – 2x – 4y – 6z + 14 = – 6x –4y + 2z + 14 – 2x – 4y – 6z = – 6x – 4y + 2z – 2x + 6x – 4y + 4y – 6z –2z = 0 4x + 0 – 8z = 0 4x – 8z = 0 4(x – 2z) = 0 x – 2z = 0 which is the required equation
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo