Last updated at Dec. 16, 2024 by Teachoo
Question 6 Convert the given complex number in polar form: –3 Given z = – 3 z = – 3 + 0i Let polar form be z = r (cosθ + i sinθ) From (1) & (2) − 3+ 0i = r ( cosθ + i sinθ) − 3+ 0𝑖 = r〖 cos〗θ + 𝑖 r sinθ Adding (3) and (4) 9 + 0 = r2 cos2 θ + r2 sin2 θ 9 = r2 (cos2 θ + sin2 θ) 9 = r2 × 1 9 = r2 √9 = r 3 = r r = 3 Finding argument − 3+ 0𝑖 = r〖 cos〗θ + 𝑖 r sinθ Comparing real part –3 = r cosθ Putting r = 3 – 3 = (3)cos θ (− 3)/3 = cos θ – 1 = cos θ cos θ = – 1 Hence, sinθ = 0 & cos θ = –1 Hence, sinθ = 0 & cos θ = –1 Since sin θ is zero And cos θ is negative θ lies in the llnd Quadrant Argument = 180° - 0° = 180° = 180° × 180"°" /180"°" = 180° × 𝜋/(180°) = π Hence r = 3 and θ = π Polar form of z = r (cos θ + sin θ) = 3 ( cos π + i sin π )
Modulus, Argument, Polar Representation
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo