Last updated at Dec. 16, 2024 by Teachoo
Example 8 Prove the rule of exponents (ab)n = anbn by using principle of mathematical induction for every natural number. Let P(n) : (ab)n = anbn. For n = 1 , L.H.S = (ab)1 = ab R.H.S = a1b1 = a b = ab Thus, L.H.S. = R.H.S , P(n) is true for n = 1 Assuming P(k) is true P(k) : (ab)k = ak bk We will prove that P(k + 1) is true. R.H.S = ak+1 bk+1 L.H.S = (ab)k+1 By the principle of mathematical induction, P(n) is true for n, where n is a natural number
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo