Ex 11.2, 3 (ii) - Chapter 11 Class 11 - Intro to Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 3 Verify the following: (ii) (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle. Let A (0, 7, –10) B ( – 1, 6, 6) C ( – 4, 9, 6) Lets first calculate Distance AB, BC & AC and then apply Pythagoras theorem to check whether it is right angled triangle Calculating AB A (0, 7, – 10) and B ( – 1, 6, 6) AB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 0, y1 = 7, z1 =10 x2 = 1, y2 = 6, z2 = 6 AB = √((−1−0)2+(6−7)2+(6−10)2) = √((−1)2+(−1)2+(−4)2) = √(1+1+16) = √18 Calculating BC B ( – 1, 6, 6) C ( – 4, 9, 6) BC = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Calculating BC B (–1, 6, 6) and C (–4, 9, 6) BC = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = – 1, y1 = 6, z1 = 6 x2 = – 4, y2 = 9, z2 = 6 BC = √((−4−(−1))2+(9−6)2+(6−6)2) BC = √((−4+1)2+(3)2+(0)2) = √((−3)2+9) = √(9+9) = √18 Calculating AC A (0, 7, 10) & C (–4, 9, 6) AC = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 0, y1 = 7, z1 = 10 x2 = – 4, y2 = 9, z2 = 6 AC = √((−4−0)2+(9−7)2+(6−10)2) = √((−4)2+(2)2+(−4)2) = √(16+4+16) = √36 = 6 Now AB = √18 , BC = √18 , AC = 6 = √36 In Right angle tringle (Hypotenuse)2 = (Height)2 + (Base)2 Since √36 is the largest of the three sides, we take Hypotenuse = √36 Hence we have to prove (√36)2 = (√18)2 + (√18)2 L.H.S (√36)2 = 36 R.H.S (√18)2 + (√18)2 = 18 + 18 = 36 Since L.H.S = R.H.S Hence, It is a right angled tringle Ex 11.2, 3 Verify the following: (iii) (–1, 2, 1), (1, –2, 5), (4, –7, 8), and (2, –3, 4) are the vertices of a parallelogram. Let A (–1, 2, 1) , B (1, –2, 5) , C (4, –7, 8) , D (2, –3, 4) ABCD can be vertices of parallelogram only if opposite sides are equal. i.e. AB = CD & BC = AD Calculating AB A (–1, 2, 1), B (1, –2, 5) AB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = – 1, y1 = 2, z1 = 1 x2 = 1, y2 = – 2, z2 = 5 AB = √((1−(−1))2+(−2−2)2+(5−1)2) = √((1+1)2+(−4)2+(4)2) = √(22+16+16) = √(4+16+16) = √36 = 6 Calculating BC B (1, – 2, 5) C (4, – 7, 8) BC = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 1, y1 = – 2, z1 = 5 x2 = 4, y2 = – 7, z2 = 8 BC = √((4−1)2+(−7−(2))2+(8−5)2) BC = √((3)2+(−7+2)2+(3)2) = √(9+(−5)2+9) = √(9+25+9) = √43 Calculating CD C (4, – 7, 8) D (2, – 3, 4) CD = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 4, y1 = – 7, z1 = 8 x2 = 2, y2 = – 3, z2 = 4 CD = √((2−4)2+(−3−(−7))2+(4−8)2) = √((−2)2+(−3+7)2+(−4)2) = √(4+(4)2+16) = √(4+16+16) = √36 = 6 Calculating DA D (2, – 3, 4) A ( –1, 2, 1) DA = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 2, y1 = – 3, z1 = 4 x2 = –1, y2 = 2, z2 = 1 DA = √((−1−2)2+(2−(−3))2+(1−4)2) = √((−3)2+(2+3)2+(−3)2) = √(9+(5)2+9) = √(9+25+9) = √43 Since AB = CD & BC = DA So, In ABCD both pairs of opposite sides are equal Thus, ABCD is a parallelogram.
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo