Check sibling questions

Exterior angle is sum of interior opposite angles

For ∆ABC

∠1 = ∠ABC + ∠ACB

∠2 = ∠BAC + ∠ACB

∠3 = ∠BAC + ∠ABC

 

Let’s solve some questions     

 

Proof of exterior angle property

In ∆ABC,

 

Also,

  ∠1 + ∠4 = 180°           (Linear Pair)

  (180° − ∠2 − ∠3) + ∠4 = 180°     (From (1 )

  ∠4 = 180° − 180° + ∠2 + ∠3

  ∠4 = 0° + ∠2 + ∠3

  ∠4 = ∠2 + ∠3         

 

∴ Exterior angle is equal to sum of interior opposite angles

 

Find exterior angle ∠ 1

 

Here,

  ∠1 = ∠B + ∠C     ( Exterior angle property)

  ∠1 = 45°  + 60° 

  ∠1 = 105° 

        

Find exterior angle

In ∆ABC,

  ∠BCD = ∠CAB + ∠ABC        (Exterior angle property)

  ∠BCD = 85° + 25°

  ∠BCD = 110° 

 

Find exterior angle

In ∆PQR,

  ∠SQR = ∠P + ∠R        (Exterior angle property)

  ∠SQR = 30° + 15°

  ∠SQR = 45° 

 

Find exterior angle

In ∆XYZ,

  ∠XZO = ∠X + ∠Y           (Exterior angle property)

  ∠XZO = 20° + 90°

  ∠XZO = 110° 

 

Find ∠ACB

In ∆ABC,

  ∠DAC = ∠B + ∠C     (Exterior angle property)

  120° = 40° + ∠C

  120° − 40° = ∠C

  80° = ∠C 

  ∠C = 80°

 

i.e. ∠ACB = 80°   

 

Find ∠PQR

In ∆PQR,

  ∠PRS = ∠PQR + ∠QPR        (Exterior angle property)

  160° = ∠PQR  + 50°

  160° − 50° = ∠PQR

  110° = ∠PQR

  ∠PQR = 110°   

 

Find ∠XZY

In ∆XYZ,

  ∠OXZ = ∠XZY + ∠XYZ        (Exterior angle property)

  140° = ∠XZY  + 90°

  140° − 90° = ∠XZY

  50° = ∠XZY

  ∠XZY = 50°      

  1. Chapter 6 Class 7 Triangle and its Properties
  2. Concept wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo