Last updated at Dec. 16, 2024 by Teachoo
Misc 2 The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations. Let the other two observations be x and y. Therefore, our observations are 2, 4, 10, 12, 14, x, y. Given Mean = 8 i.e. ๐๐ข๐ ๐๐ ๐๐๐ ๐๐๐ฃ๐๐ก๐๐๐๐ ๏ทฎ๐๐ข๐๐๐๐ ๐๐ ๐๐๐ ๐๐๐ฃ๐๐ก๐๐๐๐ ๏ทฏ = 8 2 + 4 + 10 + 12 + 14 + ๐ฅ + ๐ฆ๏ทฎ7๏ทฏ = 8 42 + x + y = 7 ร 8 x + y = 56 โ 42 x + y = 14 Also, Given Variance = 16 1๏ทฎn๏ทฏ ๏ทฎ๏ทฎ( ๐ฅ๏ทฎ๐๏ทฏ๏ทฏโ ๐ฅ๏ทฏ)๏ทฎ2๏ทฏ = 16 1๏ทฎ7๏ทฏ ๏ทฎ๏ทฎ( ๐ฅ๏ทฎ๐๏ทฏ๏ทฏโ8)๏ทฎ2๏ทฏ = 16 1๏ทฎ7๏ทฏ [(2 โ 8)2 +(4 โ 8)2+(10 โ 8)2+(12 โ 8)2 +(14 โ 8)2+(x โ 8)2 +(y โ 8)2] = 16 1๏ทฎ7๏ทฏ [ (โ6)2 + (โ4)2 + (2)2 + (4)2 + (6)2 + (x โ 8)2 + (y โ 8)2 ] = 16 1๏ทฎ7๏ทฏ [36 + 16 + 4 + 16 + 36 + x2 + (8)2 - 2(8)x + y2 + (8)2 - 2(8)y] = 16 [ 108 + x2 + 64 โ 16x + y2 + 64 โ 16y] = 16 ร 7 [ 236 + x2 + y2 โ 16y โ 16x ] = 112 [ 236 + x2 + y2 โ 16(x + y) ] = 112 [ 236 + x2 + y2 โ 16(14) ] = 112 236 + x2 + y2 โ 224 = 112 x2 + y2 = 112 โ 236 + 224 x2 + y2 = 100 From (1) x + y = 14 Squaring both sides (x + y)2 = 142 x2 + y2 + 2xy = 196 100 + 2xy = 196 2xy = 196 โ 100 2xy = 96 xy = 1๏ทฎ2๏ทฏ ร 96 xy = 48 x = 48๏ทฎ๐ฆ๏ทฏ Putting (3) in (1) x + y = 14 48๏ทฎ๐ฆ๏ทฏ + y = 14 48 + y2 = 14y y2 โ 14y + 48 = 0 y2 โ 6y โ 8y + 48 = 0 y(y โ 6) โ 8(y โ 6) = 0 (y โ 6)(y โ 8) = 0 So, y = 6 & y = 8 For y = 6 x = 48๏ทฎ๐ฆ๏ทฏ = 48๏ทฎ6๏ทฏ = 8 Hence x = 8, y = 6 are the remaining two observations For y = 8 x = 48๏ทฎ๐ฆ๏ทฏ = 48๏ทฎ8๏ทฏ = 6 Hence, x = 6, y = 8 are the remaining two observations Thus, remaining observations are 6 & 8
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo