Question 4 - Miscellaneous - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 4 Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of (β2+ 1/β3)^π is β6 : 1 We know that General term of expansion (a + b)n Tr + 1 = nCr an β rbr Fifth term from beginning We need to calculate T5 = T4 + 1 Putting r = 4 , a = β2 , b = (1/β3) T4 + 1 = nC4(β2)n β 4.(1/β3)4 T5 = nC4 γ((2)γ^(1/4))n β 4 .(1/3^(1/4) )4 T5 = nC4 γ(2)γ^(1/4 Γ (π β 4)) .(1/3^(1/4) )4 = nCr γ(2)γ^(1/4 Γ(πβ4)) .(1/3) Finding 5th term from end We know that (a + b)n = nCo an bo +nC1 anβ1 b1 +β¦β¦..+ nCnβ1 (a)n β (nβ1) .bnβ1 +nCn a0 bn = an + nC1 anβ1b1 + β¦β¦β¦β¦β¦β¦β¦β¦β¦+ nC1 a1bnβ1 + bn = bn + nC1 a1 bnβ1 +β¦β¦β¦β¦β¦β¦β¦+ nC1 anβ1 b1 + an Hence, 5th term from end = (n β 3)th term from beginning Another method, rth term from end = (n β r + 2)th term from stating 5th term from end = (n β 5 + 2)th term from stating = (n β 3)th term from beginning Now we need to calculate (n β 3)th term of expansion (β(π&π) + π/β(π&π) )r Tr + 1 = nCr an β rbr Putting r = (n β 3) β 1 = n β 4 a = β2 , b = 1/β3 T(n β 4 + 1) = nCn β 4 (β2)^(π β(πβ4)) . (1/β3)^(π β 4) = nCn β 4 [γ(2)γ^(1/4) ]^"n β n + 4" . (1/3^(1/4) )^(π β 4) = nCn β 4 [γ(2)γ^(1/4) ]^"4" . (3^((β1)/4) )^(π β 4) = nCn β 4 γ(2)γ^1 .(1/3)^((π β 4)/4) = nCn β 4 γ(2)γ^(4/4) .3^((β(π β 4))/4) = nCn β 4 γ(2)γ^1 .(1/3)^((π β 4)/4) Given that Ratio fifth term from beginning fifth term from end is β6 : 1 (πΉπππ‘β π‘πππ ππππ πππππππππ )/(πΉπππ‘β π‘πππ ππππ πππ ) = β6/1 (γππΆγ_4 2^((πβ4)/4) . 1/3)/(γππΆγ_(πβ4) 2 . (1/3)^((πβ4)/4) ) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ) . (2)^((π β 4)/4 β1 ) (1/3)^( 1 β ((π β 4)/4) ) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ) . 2^((π β 4 β 4)/4 ). (1/3)^((4 β π + 4)/4) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ). 2^((π β 8)/4 ). (1/3)^((8 β π)/4) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ). 2^((π β 8)/4 ). (1/3)^((β(π β 8))/4) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ). 2^((πβ8)/4). (3)^((π β 8)/4) = β6/1 (γππΆγ_4 )/(γππΆγ_(πβ4) ). γ(2 Γ 3)γ^((π β 8)/4). = 6^(1/2) (γππΆγ_4 )/(γππΆγ_(πβ4) ). 6^((π β 8)/4)= 6^(1/2) Comparing powers of 6 (π β 8)/4 = 1/2 n β 8 = 4/2 n β 8 = 2 n = 2 + 8 n = 10 Hence, n = 10
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo