Check sibling questions


Transcript

Example 16 Let f(x) = x2and g(x) = 2x + 1 be two real functions. Find (f + g) (x), (f โ€“ g) (x), (fg) (x), ("f" /๐‘”) (x) f(x) = x2 & g(x) = 2x + 1 (f + g) (x) = f(x) + g(x) = (x2) + (2x + 1) = x2 + 2x + 1, โˆด(f + g) (x) = x2 + 2x + 1 (f โ€“ g) (x) = f(x) โ€“ g(x) = (x2) โ€“ (2x + 1) = x2 โ€“ 2x โ€“ 1 โˆด (f โ€“ g) (x) = x2 โ€“ 2x โ€“ 1 f(x) = x2 & g(x) = 2x + 1 (fg) (x) = f(x) ร— g(x) = x2 (2x + 1) = x2 (2x) + x2 (1) = 2x3 + x2, โˆด (fg) (x) = 2x3 + x2, (f/g) (x) = (f(x))/(g(x)) where, g (x) โ‰  0, x โˆˆ R = x2/(2x + 1) Example 16 Let f(x) = x2and g(x) = 2x + 1 be two real functions. Find (f + g) (x), (f โ€“ g) (x), (fg) (x), ("f" /๐‘”) (x) f(x) = x2 & g(x) = 2x + 1 (f + g) (x) = f(x) + g(x) = (x2) + (2x + 1) = x2 + 2x + 1, โˆด(f + g) (x) = x2 + 2x + 1 (f โ€“ g) (x) = f(x) โ€“ g(x) = (x2) โ€“ (2x + 1) = x2 โ€“ 2x โ€“ 1 โˆด (f โ€“ g) (x) = x2 โ€“ 2x โ€“ 1 f(x) = x2 & g(x) = 2x + 1 (fg) (x) = f(x) ร— g(x) = x2 (2x + 1) = x2 (2x) + x2 (1) = 2x3 + x2, โˆด (fg) (x) = 2x3 + x2, (f/g) (x) = (f(x))/(g(x)) where, g (x) โ‰  0, x โˆˆ R = x2/(2x + 1) Where , 2x + 1 โ‰  0 2x โ‰  0 โ€“ 1 2x โ‰  โ€“ 1 x โ‰  (โˆ’1)/2 โˆด (๐Ÿ/๐ ) (x) = ๐’™๐Ÿ/(๐Ÿ๐’™ + ๐Ÿ) , where x โ‰  (โˆ’๐Ÿ)/๐Ÿ

  1. Chapter 2 Class 11 Relations and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo