Check sibling questions


Transcript

Ex 11.1, 5 Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), ( − 1, 1, 2) and ( −5, − 5, − 2).Direction ratios of a line passing through two points P(x1, y1, z1,), & Q (x2, y2, z2) = (x2 – x1), (y2 − y1), (z2 − z1) Direction cosines = (𝑥2 − 𝑥1)/𝑃𝑄 , (𝑦2 − 𝑦1)/𝑃𝑄 , (𝑧2 − 𝑧1)/𝑃𝑄 where, PQ = √((𝒙𝟐−𝒙𝟏)^𝟐+(𝒚𝟐−𝒚𝟏)^𝟐+(𝒛𝟐−𝒛𝟏)^𝟐 ) AB A (3, 5, −4) B( −1, 1, 2) Direction ratios = −1 − 3, 1 − 5, 2 − (−4) = −4, −4, 6 AB = √68 = √(4 × 17 ) = 2√𝟏𝟕 Direction cosines = ( −4)/(2√17) , ( −4)/(2√17) , 6/(2√17) = (−𝟐)/√𝟏𝟕 , (−𝟐)/√𝟏𝟕 , 𝟑/√𝟏𝟕 BC B ( −1, 1, 2) C ( −5, −5, −2) Direction ratios = −5 − (−1), −5 − 1, −2 − 2 = –4, −6, −4 BC = √68 = √(4 × 17 ) = 2√𝟏𝟕 Direction cosines = ( −4)/(2√17) , (−6)/(2√17) , ( −4)/(2√17) = (−𝟐)/√𝟏𝟕 , (−𝟑)/√𝟏𝟕 , (−𝟐)/√𝟏𝟕 CA C ( −5, −5, −2) A (3, 5, − 4) Direction ratios = 3 − (−5), 5 − (−5), −4 − (−2) = 8, 10 , –2 CA = √168 = √(4 × 42 )= 2√𝟒𝟐 Direction cosines = ( 8)/(2√42) , ( 10)/(2√42) , (−2)/(2√42) = ( 𝟒)/√𝟒𝟐 , ( 𝟓)/√𝟒𝟐 , (−𝟏)/√𝟒𝟐

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo