Last updated at Dec. 16, 2024 by Teachoo
Ex 11.1, 2 Find the direction cosines of a line which makes equal angles with the coordinate axes.Direction cosines of a line making, ๐ผ with x โ axis, ๐ฝ with y โ axis, and ๐พ with z โ axis are l,m,n l = cos ๐ถ, m = cos ๐ท, n = cos ๐ธ Given the line makes equal angles with the coordinate axes. So, ๐ถ = ๐ท = ๐ธ Direction cosines are l = cos ๐ถ, m = cos ๐ถ, n = cos ๐ถ We know that l2 + m2 + n2 = 1 cos2 ๐ผ + cos2 ๐ฝ + cos2 ๐พ = 1 cos2 ๐ถ + cos2 ๐ถ + cos2 ๐ถ = 1 3 cos2 ๐ผ = 1/3 cos2 ๐ผ = 1/3 cos ๐ผ = ยฑ โ(1/3) โด cos ๐ถ = ยฑ ๐/โ๐ Therefore, direction cosines are l = ยฑ ๐/โ๐, m = ยฑ ๐/โ๐, n = ยฑ ๐/โ๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo