Misc 3 - Prove x2 - y2 = c(x2 + y2)2 is general solution of - Miscellaneous

part 2 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations
part 3 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations
part 4 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations
part 5 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 6 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 7 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 8 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 9 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 10 - Misc 3 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations

Remove Ads

Transcript

Misc 3 Prove that ๐‘ฅ^2โˆ’๐‘ฆ^2=๐‘(๐‘ฅ^2+๐‘ฆ^2 )^2 is the general solution of differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ, where ๐‘ is a parameter .Given differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ (๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^3 โˆ’ 3๐‘ฅ^2 ๐‘ฆ)=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^(3 )โˆ’ 3๐‘ฅ^2 ๐‘ฆ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฅ๐‘ฆ^2)/๐‘ฅ^3 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2 ๐‘ฆ)/๐‘ฆ^3 ) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฆ^2)/๐‘ฅ^2 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2)/๐‘ฆ^2 ) ) ๐’…๐’š/๐’…๐’™=(๐’™/๐’š)^๐Ÿ‘ร—((๐Ÿ โˆ’ ๐Ÿ‘(๐’š/๐’™)^๐Ÿ ))/((๐Ÿ โˆ’ ๐Ÿ‘(๐’™/๐’š)^๐Ÿ ) ) Putting y = vx. Differentiating w.r.t. x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘ฃ Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(1/๐‘ฃ)^3ร—((1 โˆ’ 3๐‘ฃ^2 ))/((1 โˆ’ 3(1/๐‘ฃ)^2 ) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =1/๐‘ฃ^3 ร—((1 โˆ’ 3๐‘ฃ^2 ))/(((๐‘ฃ^2 โˆ’ 3)/๐‘ฃ^2 ) ) ๐’™ ๐’…๐’—/๐’…๐’™+๐’— =๐Ÿ/๐’—ร—((๐Ÿ โˆ’ ๐Ÿ‘๐’—^๐Ÿ ))/((๐’—^๐Ÿ โˆ’ ๐Ÿ‘) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ))/((๐‘ฃ^2 โˆ’ 3) )โˆ’๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ) โˆ’ ๐‘ฃ ร— ๐‘ฃ (๐‘ฃ^2 โˆ’ 3))/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ 3๐‘ฃ^2 โˆ’ ๐‘ฃ^4 + 3๐‘ฃ^2)/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ ๐‘ฃ^4)/((๐‘ฃ^2 โˆ’ 3) ) ๐’™ ๐’…๐’—/๐’…๐’™=(๐Ÿ โˆ’ ๐’—^๐Ÿ’)/((๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—) ) (๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’—)๐’…๐’—/((๐Ÿ โˆ’๐’—^๐Ÿ’ ) )=๐’…๐’™/๐’™ Integrating Both Sides โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€—=โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’ใ€–(๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’— )/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’—ใ€—=๐ฅ๐จ๐ โกใ€–|๐’™|ใ€—+๐‘ช Let I = โˆซ1โ–’(๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—)/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’— Therefore, ๐ผ =logโกใ€–|๐‘ฅ|+๐‘ใ€— Solving ๐‘ฐ ๐ผ =โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€— =โˆซ1โ–’ใ€–(๐‘ฃ^3 )/(1 โˆ’ ๐‘ฃ^4 )โˆ’3โˆซ1โ–’ใ€–๐‘ฃ/(1 โˆ’ใ€– ๐‘ฃใ€—^4 ) ๐‘‘๐‘ฃใ€—ใ€— Put ๐’—^๐Ÿ’โˆ’๐Ÿ=๐’• Diff. w.r.t. ๐‘ฃ ๐‘‘/๐‘‘๐‘ฃ (๐‘ฃ^4โˆ’1)=๐‘‘๐‘ก/๐‘‘๐‘ฃ 4๐‘ฃ^3=๐‘‘๐‘ก/๐‘‘๐‘ฃ ๐‘‘๐‘ฃ=๐‘‘๐‘ก/(4๐‘ฃ^3 ) Put ๐’‘=๐’—^๐Ÿ Diff. w.r.t. ๐‘ฃ ๐‘‘๐‘/๐‘‘๐‘ฃ=2๐‘ฃ ๐‘‘๐‘/2๐‘ฃ=๐‘‘๐‘ฃ ๐‘ฐ =โˆซ1โ–’ใ€–๐’—^๐Ÿ‘/(โˆ’๐’•) ๐’…๐’•/(๐Ÿ’๐’—^๐Ÿ‘ ) โˆ’๐Ÿ‘โˆซ1โ–’ใ€–๐’—/(๐Ÿ โˆ’ ๐’‘^๐Ÿ ) ๐’…๐’‘/๐Ÿ๐’—ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘กโˆ’3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/(1 โˆ’ ๐‘^2 )ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘ก+3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/((๐‘^2 โˆ’ 1^2 ) )ใ€—ใ€— ๐‘ฐ = (โˆ’๐Ÿ)/( ๐Ÿ’) ๐ฅ๐จ๐ โก๐’•+๐Ÿ‘/๐Ÿ ร— ๐Ÿ/(๐Ÿ(๐Ÿ)) ๐’๐’๐’ˆ((๐’‘ โˆ’ ๐Ÿ)/(๐’‘ + ๐Ÿ)) Putting t = ๐‘ฃ^4 โˆ’ 1 and p = v2 I = (โˆ’๐Ÿ)/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ) ใ€—+๐Ÿ‘/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/((๐’—^๐Ÿ + ๐Ÿ))ใ€— I = 1/4 [โˆ’logโกใ€–(๐‘ฃ^4โˆ’1)+3 ๐‘™๐‘œ๐‘” ((๐‘ฃ^2 โˆ’ 1))/((๐‘ฃ^2 + 1))ใ€— ] I = 1/4 [โˆ’๐’๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ)+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 [๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ร— 1/((๐‘ฃ^4 โˆ’ 1))] I = 1/4 [๐’๐’๐’ˆโกใ€–๐Ÿ/((๐’—^๐Ÿ’โˆ’๐Ÿ) )+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 ๐’๐’๐’ˆ ๐Ÿ/((๐’—^๐Ÿ’ โˆ’ ๐Ÿ))ร—(๐’—^๐Ÿ โˆ’ ๐Ÿ)^๐Ÿ‘/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ‘ I = 1/4 ๐‘™๐‘œ๐‘” 1/((๐‘ฃ^2 โˆ’ 1)(๐‘ฃ^2 + 1))ร—(๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 I = 1/4 ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^2/(๐‘ฃ^2 + 1)^4 I = ๐Ÿ/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ )^๐Ÿ ใ€— I = 1/4 ร— 2 logโกใ€–((๐‘ฃ^2 โˆ’ 1))/(๐‘ฃ^2 + 1)^2 ใ€— I = ๐Ÿ/๐Ÿ ๐’๐’๐’ˆโกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ ใ€— Putting back v = ๐‘ฆ/๐‘ฅ I = 1/2 logโกใ€–(((๐‘ฆ/๐‘ฅ)^2 โˆ’ 1))/((๐‘ฆ/๐‘ฅ)^2 + 1)^2 ใ€— I = 1/2 log (((๐‘ฆ^2 โˆ’ ๐‘ฅ2)/๐‘ฅ^2 )/((๐‘ฆ^2 + ๐‘ฅ2)/๐‘ฅ^2 )^2 ) I = ๐Ÿ/๐Ÿ log [(๐’™๐Ÿ(๐’š^๐Ÿ โˆ’ ๐’™^๐Ÿ))/(๐’š^๐Ÿ + ๐’™^๐Ÿ )^๐Ÿ ] Substituting value of I in (2) I = log |x| + c ๐Ÿ/๐Ÿ log โŒˆ(๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/((๐’š๐Ÿ + ๐’™๐Ÿ))โŒ‰ = log |x| + c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = 2 log |x| + 2c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/(๐‘ฅ2 + ๐‘ฆ2)^2 โŒ‰ = log c1|x|2 Cancelling log (๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/(๐’™๐Ÿ + ๐’š๐Ÿ)^๐Ÿ = c1 x2 x2 (y2 โˆ’ x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 โˆ’ x2 = c1 (x2 + y2)2 x2 โˆ’ y2 = c2 (x2 + y2)2 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo