<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=539359806247306&ev=PageView&noscript=1"/>

Ex 9.2, 2 - If E, F, G and H are mid-points of sides - Paralleograms & triangles with same base & same parallel lines

  1. Chapter 9 Class 9th Areas of parallelograms and Triangles
  2. Serial order wise
Ask Download

Transcript

Ex 9.2, 2 If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that ar (EFGH) = 1/2 ar (ABCD) Given: A parallelogram ABCD where E, F, G, H are the mid-points of AB,BC,CD & AD respectively To prove: ar (EFGH) = 1/2 ar (ABCD) Proof: Join H & F Now, So, AD ∥ BC ⇒ DH ∥ CF Also, AD = BC 1/2 AD = 1/2 BC DH = CF In DHFC, DH = CF & DH ∥ CF ‖ Since one pair of opposite sides are equal and parallel ∴ DHFC is a parallelogram Similarly, HABF is a parallelogram Since DHFC is a parallelogram, DC ∥ HF As ΔHGF and parallelogram DHFC are on the same base HF & between the same parallel lines DC and HF, ∴ Area (ΔHGF) =  1/2 Area (DHFC) Similarly, Since HABF is a parallelogram, HF ∥ AB As ΔHEF and parallelogram HABF are on the same base HF and between the same parallel lines AB and HF, ∴ Area (ΔHEF) =  1/2 Area (HFAB) Adding (1) & (2) Area (∆HGF) + Area (∆HEF) = 1/2 Area (DHFC) + 1/2 Area (HFAB) Area (HEFG) = 1/2 [ Area (DHFC) + Area (HFAB)] ⇒ Area (EFGH) = 1/2 Area (ABCD) Hence proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can contact him here.
Jail