Check sibling questions


Transcript

Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (i) π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚, 𝑏 βƒ— = 3𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + 2π‘˜ Μ‚, and 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚ , 𝑏 βƒ— = 3𝑖 Μ‚ – 𝑗 Μ‚ + 2π‘˜ Μ‚ , 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(2&βˆ’3&4@3&βˆ’1&2@1&2&βˆ’1)| = 2[(βˆ’1Γ—βˆ’1)βˆ’(2Γ—2) ] βˆ’ (βˆ’3) [(3Γ—βˆ’1)βˆ’(1Γ—2) ] + 4[(3Γ—2)βˆ’(1Γ—βˆ’1)] = 2 [1βˆ’4]+3(βˆ’3βˆ’2)+4[6+1] = 2(–3) + 3 (–5) + 4(7) = –6 – 15 + 28 = 7 Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (ii) π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚, 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, and 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚ , 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ , 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(1&βˆ’2&3@2&1&βˆ’1@2&1&βˆ’1)| = 1[(1Γ—βˆ’1)βˆ’(1Γ—βˆ’1)] βˆ’ (βˆ’2) [(2Γ—βˆ’1)βˆ’(2Γ—βˆ’1)] + 3[(2Γ—1)βˆ’(2Γ—1)] = 1 [βˆ’1+1]+2(βˆ’2+2)+3[2βˆ’2] = 1(0) + 2 (0) + 3(0) = 0

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo