Check sibling questions


Transcript

Ex 9.1, 10 The slope of a line is double of the slope of another line. If tangent of the angle between them is 1/3 , find the slopes of the lines. Let m1 & m2 be the slopes of two lines We know that angles between two lines are tan ฮธ = |(๐‘š2 โˆ’ ๐‘š1)/(1 + ๐‘š1๐‘š2)| Here tan ฮธ = 1/3 & m2 = 2m1 Putting values tan ฮธ = |(๐‘š2 โˆ’ ๐‘š1)/(1 + ๐‘š1๐‘š2)| 1/3 = |(2๐‘š1 โˆ’ ๐‘š1)/(1 + ๐‘š1(2๐‘š1))| 1/3 = |๐‘š_1/(1 + 2ใ€–๐‘š_1ใ€—^2 )| |๐‘š_1/(1 + 2ใ€–๐‘š_1ใ€—^2 )| = 1/3 So, ๐‘š_1/(1 + 2ใ€–๐‘š_1ใ€—^2 ) = 1/3 or ๐‘š_1/(1 + 2ใ€–๐‘š_1ใ€—^2 ) = ( โˆ’1)/3 Solving ๐’Ž_๐Ÿ/(๐Ÿ + ๐Ÿใ€–๐’Ž_๐Ÿใ€—^๐Ÿ ) = ๐Ÿ/๐Ÿ‘ 3m1 = 1 + 2ใ€–"m1" ใ€—^2 2ใ€–"m1" ใ€—^2 + 1 โ€“ 3m1 = 0 2ใ€–"m1" ใ€—^2 โ€“ 3m1 + 1 = 0 2ใ€–"m1" ใ€—^2 โ€“ 2m1 โ€“ m1 + 1 = 0 2m1(m1 โ€“ 1) โ€“ 1(m1 โ€“ 1) = 0 (2m1 โ€“ 1) (m1 โ€“ 1) = 0 So, m1 = ๐Ÿ/๐Ÿ , m1 = 1 Solving ๐’Ž_๐Ÿ/(๐Ÿ + ๐Ÿใ€–๐’Ž_๐Ÿใ€—^๐Ÿ ) = (โˆ’๐Ÿ)/๐Ÿ‘ 3m1 = โ€“1 โ€“ 2ใ€–"m1" ใ€—^2 2ใ€–"m1" ใ€—^2 + 1 + 3m1 = 0 2ใ€–"m1" ใ€—^2 + 3m1 + 1 = 0 2ใ€–"m1" ใ€—^2 + 2m1 + m1 + 1 = 0 2m1(m1 + 1) + 1(m1 + 1) = 0 (2m1 + 1) (m1 + 1) = 0 So, m1 = (โˆ’๐Ÿ)/๐Ÿ , m1 = โ€“1 When m1 = ( ๐Ÿ)/๐Ÿ m2 = 2m1 m2 = 2(1/2) = 1 When m1 = 1 m2 = 2m1 m2 = 2(1) = 2 When m1 = ( โˆ’๐Ÿ)/๐Ÿ m2 = 2m1 m2 = 2(( โˆ’ 1)/2) = โ€“1 When m1 = โ€“1 m2 = 2m1 m2 = 2(โˆ’1) = โ€“2 Hence slope of lines are ๐Ÿ/๐Ÿ and 1 or 1 and 2 or ( โˆ’๐Ÿ)/๐Ÿ and โˆ’1 or โˆ’1 and โˆ’2

  1. Chapter 9 Class 11 Straight Lines
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo