Check sibling questions


Transcript

Misc 2 Evaluate (√3 + √2 )6 – (√3 – √2 )6 . Finding (a + b)6 – (a – b)6 We know that (a + b)n = nC0 an + nC1 an – 1 b1 + nC2 an – 2 b2 + ….…. + nCn – 1 a1 bn – 1 + nCn bn Hence (a + b)6 = = 6!/(0! (6 − 0)!) a6 × 1 + 6!/(1! (6 − 1) !) a5 b + 6!/2!(6 − 2)! a4 b2 + 6!/3!(6 − 3)! a3 b3 + 6!/(4! (6 − 4) !)a2 b4 + 6!/5!(6 − 5)! ab5 + 6!/(6 ! (6 − 6) !) b6 = 6!/(1 × 6! ) a6 + 6!/(1 × 5!) a5 b + 6!/(2! × 4!) a4 b2 + 6!/(3! 3!) a3 b3 + 6!/(4! 2!) a2 b4 + 6!/(5! × 1) a b5 + 6!/(6! × 1) b6 = 6!/6! a6 + (6 ×5!)/(5! ) a5b + (6 × 5 × 4!)/(2 × 4!) a4 b2 + (6 × 5 × 4 × 3!)/(3 × 2 × 1 × 3!) a3 b3 + (6 × 5 × 4!)/(2 × 1 × 4!) a2 b4 + (6 × 5!)/(1 × 5!) ab5 + 6!/6! b6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6 For (a – b)6 Replace b by (–b) in (1) (a + (–b)) 6 = a6 + 6a5 (–b) + 15a4 (– b)2 + 20a3 (– b)3 + 15a2 (– b)4 + 6a(– b)5 + (– b)6 (a – b)6 = a6 – 6a5 b + 15a4 b2 – 20a3 b3 + 15a2 b4 – 6ab5 + b6 Now, (a + b)6 − (a – b)6 = (a6 + 6a5 b + 15a4 b2 + 20a3 b3 + 15a2 b4 + 6ab5 + b6) − (a6 – 6a5 b + 15a4 b2 – 20a3 b3 + 15a2 b4 – 6ab5 + b6) = a6 − a6 + 15a4 b2 − 15a4 b2 + 15a2 b4 − 15a2 b4 + b6 − b6 + 6a5 b + 6a5b + 20a3 b3 + 20a3 b3 + 6ab5 + 6ab5 = 12a5 b + 40a3 b3 + 12ab5 = 4ab (3a4 + 10a2b2 + 3b4) Thus, (a + b)6 – (a – b)6 = 4ab (3a4 + 10a2b2 + 3b4) We need to find (√3 + √2)6 – (√3 – √2)6 Putting a = √3 and b =√2 (√3 + √2)6 – (√3 – √2)6 = 4(√3 )(√2 ) (3(√3 )^4+10(√3 )^2 (√2 )^2+3(√2 )^4 ) = 4(√(3×2) ) (3(√3 )^4+10(√3 )^2 (√2 )^2+3(√2 )^4 ) = 4(√6 ) (3(√3 )^4+10(√3 )^2 (√2 )^2+3(√2 )^4 ) = 4(√6 ) (3(3)^(1/2 × 4)+10(3)^(1/2 × 2) (2)^(1/2 × 2)+3(2)^(1/2 × 4) ) = 4(√6 ) (3(3)^2+10(3)^1 (2)^1+3(2)^2 ) = 4(√6 ) (27+60+12) = 4(√6 ) (99) = 396√6 Thus, (√3 + √2)6 – (√3 – √2)6 = 3𝟗𝟔√𝟔

  1. Chapter 7 Class 11 Binomial Theorem
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo