For 3 sets A , B & C

n(A) = Number of elements of set A

n(B) = Number of elements of set B

n(C) = Number of elements of set C

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)

Last updated at Nov. 26, 2017 by Teachoo

For 3 sets A , B & C

n(A) = Number of elements of set A

n(B) = Number of elements of set B

n(C) = Number of elements of set C

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)

Number of elements in set - 3 sets

Chapter 1 Class 11 Sets

Concept wise

- Depiction and Defination
- Depicition of sets - Roster form
- Depicition of sets - Set builder form
- Intervals
- Null Set
- Finite/Infinite
- Equal sets
- Subset
- Power Set
- Universal Set
- Venn Diagram and Union of Set
- Intersection of Sets
- Difference of sets
- Complement of set
- Number of elements in set - 2 sets (Direct)
- Number of elements in set - 2 sets - (Using properties)
- Number of elements in set - 3 sets
- Proof - Using properties of sets
- Proof - where properties of sets cant be applied,using element

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.