Ex 12.1, 6 - Minimise Z = x + 2y. Show minimum Z occurs at - Linear equations given - Unbounded

Slide16.PNG
Slide17.PNG Slide18.PNG

  1. Chapter 12 Class 12 Linear Programming
  2. Serial order wise
Ask Download

Transcript

Ex 12.1, 6 Solve the following Linear Programming Problems graphically: Minimise Z = x + 2y subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0. Show that the minimum of Z occurs at more than two points. Minimize Z = x + 2y Subject to 2x + y ≥ 3 x + 2y ≥ 6 x , y ≥ 0 Since, the region that is feasible is unbounded, Hence 6 may or may not be the minimum value of z We need to graph inequality : There is no common point between feasible region & inequality ∴ Z is minimum on all points joining line (0, 3), (6, 0) i.e. Z will be minimum on x + 2y = 6 Explanation – Taking points on line x +2y = 6 Hence, Z is minimum at all the points joining (0, 3) & (6, 0) ⇒ Z will be minimum on all points joining line (0, 3) & (6, 0) ∴ Z will be minimum on x + 2y = 6

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 7 years. He provides courses for Mathematics and Science from Class 6 to 12. You can learn personally from here https://www.teachoo.com/premium/maths-and-science-classes/.
Jail