Chapter 7 Class 12 Integrals
Concept wise

  Slide14.JPG

Slide15.JPG
Slide16.JPG
Slide17.JPG


Transcript

Misc 37 Prove that ∫_0^1β–’sin^(βˆ’1)⁑π‘₯ 𝑑π‘₯=πœ‹/2βˆ’1 Solving L.H.S ∫_0^1▒〖〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) 𝑑π‘₯γ€— Let I = ∫1▒〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) 𝑑π‘₯ Let x = sin πœƒ dx = cosπœƒ dπœƒ Substituting in I I = ∫1▒〖〖𝑠𝑖𝑛〗^(βˆ’1) (sinβ‘γ€–πœƒ) cosβ‘γ€–πœƒ π‘‘πœƒγ€— γ€— γ€— = ∫1β–’γ€–πœƒ cosβ‘γ€–πœƒ π‘‘πœƒγ€— γ€— = πœƒ ∫1β–’cosβ‘γ€–πœƒ π‘‘πœƒβˆ’βˆ«1β–’((𝑑 (πœƒ))/π‘‘πœƒ ∫1β–’cosβ‘γ€–πœƒ π‘‘πœƒγ€— ) π‘‘πœƒγ€— = πœƒ (sin πœƒ) βˆ’ ∫1β–’γ€–(1) sinβ‘γ€–πœƒ π‘‘πœƒγ€— γ€— = πœƒ sin πœƒ βˆ’ ∫1β–’sinβ‘γ€–πœƒ π‘‘πœƒγ€— = πœƒ sin πœƒ βˆ’ (βˆ’cos πœƒ) = πœƒ sin πœƒ + cos πœƒ Putting value of πœƒ Hence I = πœƒ sin πœƒ + cos πœƒ I = 〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯)Γ—π‘₯+√(1βˆ’π‘₯^2 ) = π‘₯ 〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯)+ √(1βˆ’π‘₯^2 ) Thus, ∫1▒〖〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) 𝑑π‘₯=𝐹(π‘₯)=π‘₯〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯)+√(1βˆ’π‘₯^2 )γ€— Now, ∫1_0^1▒〖〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) 𝑑π‘₯=𝐹(1)βˆ’πΉ(0)γ€— = (1) 〖𝑠𝑖𝑛〗^(βˆ’1) (1)+√(1βˆ’1)βˆ’(0γ€– 𝑠𝑖𝑛〗^(βˆ’1) (0)+√(1βˆ’0) ) =πœ‹/2βˆ’(1) =𝝅/πŸβˆ’πŸ = R.H.S Hence, Proved.

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.