9.3 i.jpg

9.3 ii.jpg
9.3 iii.jpg 9.3, 4 last slide.jpg

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

Transcript

Ex 9.3, 4 Form a differential equation representing the given family of curves by eliminating arbitrary constants ๐‘Ž and ๐‘. ๐‘ฆ=๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) The Number Of Times We Differentiate Is Equal To Number Of Constants ๐‘ฆ=๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) โˆด Differentiating Both Sides w.r.t. ๐‘ฅ ๐‘ฆ^โ€ฒ=๐‘‘/๐‘‘๐‘ฅ [๐‘’^2๐‘ฅ [๐‘Ž+๐‘๐‘ฅ]] ๐‘ฆ^โ€ฒ=๐‘‘[๐‘’^2๐‘ฅ ]/๐‘‘๐‘ฅ.[๐‘Ž+๐‘๐‘ฅ]+๐‘’^(2๐‘ฅ ) ๐‘‘[๐‘Ž + ๐‘๐‘ฅ]/๐‘‘๐‘ฅ ๐‘ฆ^โ€ฒ=ใ€–2๐‘’ใ€—^2๐‘ฅ [๐‘Ž+๐‘๐‘ฅ]+๐‘’^2๐‘ฅ.๐‘ ๐‘ฆ^โ€ฒ=๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘] Again differentiating w.r.t.x ๐‘ฆ^โ€ฒ=๐‘‘/๐‘‘๐‘ฅ (๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]) yโ€ = (๐‘‘ (๐‘’^2๐‘ฅ))/๐‘‘๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅ (๐‘‘ [2๐‘Ž+2๐‘๐‘ฅ+๐‘])/๐‘‘๐‘ฅ yโ€ = 2๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘]+๐‘’^2๐‘ฅร—2๐‘ Putting yโ€™=๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ+๐‘] yโ€ = 2yโ€™ + ๐‘’^2๐‘ฅร—2๐‘ yโ€ = 2yโ€™ + 2๐‘’^2๐‘ฅ ๐‘ yโ€ โˆ’ 2yโ€™ = 2๐‘’^2๐‘ฅ ๐‘ Also, yโ€™ โˆ’ 2y = ๐‘’^2๐‘ฅ [2๐‘Ž+2๐‘๐‘ฅ +๐‘]โˆ’2๐‘’^2๐‘ฅ (๐‘Ž+๐‘๐‘ฅ) yโ€™ โˆ’ 2y = 2a๐‘’^2๐‘ฅ+2๐‘๐‘ฅ ๐‘’^2๐‘ฅ+๐‘’^2๐‘ฅ ๐‘โˆ’2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅโˆ’2๐‘๐‘ฅ ๐‘’^2๐‘ฅ yโ€™ โˆ’ 2y = (2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅโˆ’2๐‘Žใ€– ๐‘’ใ€—^2๐‘ฅ )+(2๐‘๐‘ฅ ๐‘’^2๐‘ฅโˆ’2๐‘๐‘ฅ ๐‘’^2๐‘ฅ )+๐‘’^2๐‘ฅ ๐‘ yโ€™ โˆ’ 2y = 0 + 0 + ๐‘’^2๐‘ฅ ๐‘ yโ€™ โˆ’ 2y = ๐‘’^2๐‘ฅ ๐‘ Now ((1))/((2)) , (๐‘ฆ" โˆ’ 2๐‘ฆ)/(๐‘ฆ^(โ€ฒ ) โˆ’ 2๐‘ฆ)=(2๐‘’^2๐‘ฅ ๐‘)/(๐‘’^2๐‘ฅ ๐‘) (๐‘ฆ^โ€ฒโ€ฒ โˆ’ 2๐‘ฆ^โ€ฒ)/(๐‘ฆ^โ€ฒโˆ’2๐‘ฆ)= 2 yโ€ โˆ’ 2yโ€™ = 2(yโ€™ โˆ’ 2y) yโ€ โˆ’ 2yโ€™ = 2yโ€™ โˆ’ 4y yโ€ โˆ’ 2yโ€™ โˆ’ 2yโ€™ + 4y = 0 yโ€ โˆ’ 4yโ€™ + 4y = 0

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.