Slide15.JPG

Slide16.JPG
Slide17.JPG
Slide18.JPG
Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG


Transcript

Misc 3 Prove that 𝑥^2−𝑦^2=𝑐(𝑥^2+𝑦^2 )^2 is the general solution of differential equation (𝑥^3−3𝑥𝑦^2 )𝑑𝑥=(𝑦^3−3𝑥^2 𝑦)𝑑𝑦, where 𝑐 is a parameter .Given differential equation (𝑥^3−3𝑥𝑦^2 )𝑑𝑥=(𝑦^3−3𝑥^2 𝑦)𝑑𝑦 (𝑥^3 − 3𝑥𝑦^2)/(𝑦^3 − 3𝑥^2 𝑦)=𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=(𝑥^3 − 3𝑥𝑦^2)/(𝑦^(3 )− 3𝑥^2 𝑦) 𝑑𝑦/𝑑𝑥=(𝑥^3 (1 − (3𝑥𝑦^2)/𝑥^3 ))/(𝑦^(3 ) (1 −(3𝑥^2 𝑦)/𝑦^3 ) ) 𝑑𝑦/𝑑𝑥=(𝑥^3 (1 − (3𝑦^2)/𝑥^2 ))/(𝑦^(3 ) (1 −(3𝑥^2)/𝑦^2 ) ) 𝒅𝒚/𝒅𝒙=(𝒙/𝒚)^𝟑×((𝟏 − 𝟑(𝒚/𝒙)^𝟐 ))/((𝟏 − 𝟑(𝒙/𝒚)^𝟐 ) ) Putting y = vx. Differentiating w.r.t. x 𝑑𝑦/𝑑𝑥 = 𝑥 𝑑𝑣/𝑑𝑥 + 𝑣 Putting value of 𝑑𝑦/𝑑𝑥 and y = vx in (1) 𝑥 𝑑𝑣/𝑑𝑥+𝑣 =(1/𝑣)^3×((1 − 3𝑣^2 ))/((1 − 3(1/𝑣)^2 ) ) 𝑥 𝑑𝑣/𝑑𝑥+𝑣 =1/𝑣^3 ×((1 − 3𝑣^2 ))/(((𝑣^2 − 3)/𝑣^2 ) ) 𝒙 𝒅𝒗/𝒅𝒙+𝒗 =𝟏/𝒗×((𝟏 − 𝟑𝒗^𝟐 ))/((𝒗^𝟐 − 𝟑) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×((1 − 3𝑣^2 ))/((𝑣^2 − 3) )−𝑣 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×((1 − 3𝑣^2 ) − 𝑣 × 𝑣 (𝑣^2 − 3))/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×(1 − 3𝑣^2 − 𝑣^4 + 3𝑣^2)/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×(1 − 𝑣^4)/((𝑣^2 − 3) ) 𝒙 𝒅𝒗/𝒅𝒙=(𝟏 − 𝒗^𝟒)/((𝒗^𝟑 − 𝟑𝒗) ) (𝒗^𝟑 −𝟑𝒗)𝒅𝒗/((𝟏 −𝒗^𝟒 ) )=𝒅𝒙/𝒙 Integrating Both Sides ∫1▒〖(𝑣^3 −3𝑣 )/(1 − 𝑣^4 ) 𝑑𝑣〗=∫1▒𝑑𝑥/𝑥 ∫1▒〖(𝒗^𝟑 −𝟑𝒗 )/(𝟏 − 𝒗^𝟒 ) 𝒅𝒗〗=𝐥𝐨𝐠⁡〖|𝒙|〗+𝑪 Let I = ∫1▒(𝒗^𝟑 − 𝟑𝒗)/(𝟏 − 𝒗^𝟒 ) 𝒅𝒗 Therefore, 𝐼 =log⁡〖|𝑥|+𝑐〗 Solving 𝑰 𝐼 =∫1▒〖(𝑣^3 −3𝑣 )/(1 − 𝑣^4 ) 𝑑𝑣〗 =∫1▒〖(𝑣^3 )/(1 − 𝑣^4 )−3∫1▒〖𝑣/(1 −〖 𝑣〗^4 ) 𝑑𝑣〗〗 Put 𝒗^𝟒−𝟏=𝒕 Diff. w.r.t. 𝑣 𝑑/𝑑𝑣 (𝑣^4−1)=𝑑𝑡/𝑑𝑣 4𝑣^3=𝑑𝑡/𝑑𝑣 𝑑𝑣=𝑑𝑡/(4𝑣^3 ) Put 𝒑=𝒗^𝟐 Diff. w.r.t. 𝑣 𝑑𝑝/𝑑𝑣=2𝑣 𝑑𝑝/2𝑣=𝑑𝑣 𝑰 =∫1▒〖𝒗^𝟑/(−𝒕) 𝒅𝒕/(𝟒𝒗^𝟑 ) −𝟑∫1▒〖𝒗/(𝟏 − 𝒑^𝟐 ) 𝒅𝒑/𝟐𝒗〗〗 𝐼 =−1/4 ∫1▒〖 𝑑𝑡/𝑡−3/2 ∫1▒〖 𝑑𝑝/(1 − 𝑝^2 )〗〗 𝐼 =−1/4 ∫1▒〖 𝑑𝑡/𝑡+3/2 ∫1▒〖 𝑑𝑝/((𝑝^2 − 1^2 ) )〗〗 𝑰 = (−𝟏)/( 𝟒) 𝐥𝐨𝐠⁡𝒕+𝟑/𝟐 × 𝟏/(𝟐(𝟏)) 𝒍𝒐𝒈((𝒑 − 𝟏)/(𝒑 + 𝟏)) Putting t = 𝑣^4 − 1 and p = v2 I = (−𝟏)/𝟒 𝐥𝐨𝐠⁡〖(𝒗^𝟒−𝟏) 〗+𝟑/𝟒 𝐥𝐨𝐠⁡〖((𝒗^𝟐 − 𝟏))/((𝒗^𝟐 + 𝟏))〗 I = 1/4 [−log⁡〖(𝑣^4−1)+3 𝑙𝑜𝑔 ((𝑣^2 − 1))/((𝑣^2 + 1))〗 ] I = 1/4 [−𝒍𝐨𝐠⁡〖(𝒗^𝟒−𝟏)+ 𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 〗 ] I = 1/4 [𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 × 1/((𝑣^4 − 1))] I = 1/4 [𝒍𝒐𝒈⁡〖𝟏/((𝒗^𝟒−𝟏) )+ 𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 〗 ] I = 1/4 𝒍𝒐𝒈 𝟏/((𝒗^𝟒 − 𝟏))×(𝒗^𝟐 − 𝟏)^𝟑/(𝒗^𝟐 + 𝟏)^𝟑 I = 1/4 𝑙𝑜𝑔 1/((𝑣^2 − 1)(𝑣^2 + 1))×(𝑣^2 − 1)^3/(𝑣^2 + 1)^3 I = 1/4 𝑙𝑜𝑔 (𝑣^2 − 1)^2/(𝑣^2 + 1)^4 I = 𝟏/𝟒 𝐥𝐨𝐠⁡〖(((𝒗^𝟐 − 𝟏))/(𝒗^𝟐 + 𝟏)^𝟐 )^𝟐 〗 I = 1/4 × 2 log⁡〖((𝑣^2 − 1))/(𝑣^2 + 1)^2 〗 I = 𝟏/𝟐 𝒍𝒐𝒈⁡〖((𝒗^𝟐 − 𝟏))/(𝒗^𝟐 + 𝟏)^𝟐 〗 Putting back v = 𝑦/𝑥 I = 1/2 log⁡〖(((𝑦/𝑥)^2 − 1))/((𝑦/𝑥)^2 + 1)^2 〗 I = 1/2 log (((𝑦^2 − 𝑥2)/𝑥^2 )/((𝑦^2 + 𝑥2)/𝑥^2 )^2 ) I = 𝟏/𝟐 log [(𝒙𝟐(𝒚^𝟐 − 𝒙^𝟐))/(𝒚^𝟐 + 𝒙^𝟐 )^𝟐 ] Substituting value of I in (2) I = log |x| + c 𝟏/𝟐 log ⌈(𝒙𝟐(𝒚𝟐 − 𝒙𝟐))/((𝒚𝟐 + 𝒙𝟐))⌉ = log |x| + c log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = 2 log |x| + 2c log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = log |x|2 + log c1 log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = log |x|2 + log c1 log ⌈(𝑥2(𝑦2 − 𝑥2))/(𝑥2 + 𝑦2)^2 ⌉ = log c1|x|2 Cancelling log (𝒙𝟐(𝒚𝟐 − 𝒙𝟐))/(𝒙𝟐 + 𝒚𝟐)^𝟐 = c1 x2 x2 (y2 − x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 − x2 = c1 (x2 + y2)2 x2 − y2 = c2 (x2 + y2)2 Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.