



Last updated at March 11, 2017 by Teachoo
Transcript
Ex 5.1, 13 Is the function defined by ๐ ๐ฅ๏ทฏ= ๐ฅ+5, ๐๐ ๐ฅโค1๏ทฎ& ๐ฅโ5 , ๐๐ ๐ฅ>1๏ทฏ๏ทฏ a continuous function? Given function is , ๐ ๐ฅ๏ทฏ= ๐ฅ+5, ๐๐ ๐ฅโค1๏ทฎ& ๐ฅโ5 , ๐๐ ๐ฅ>1๏ทฏ๏ทฏ Case 1 At x = 1 f is continuous at x = 1 if L.H.L = R.H.L = ๐ 1๏ทฏ i.e. if lim๏ทฎxโ 1๏ทฎโ๏ทฏ๏ทฏ ๐ ๐ฅ๏ทฏ = lim๏ทฎxโ 1๏ทฎ+๏ทฏ๏ทฏ ๐ ๐ฅ๏ทฏ = ๐ 1๏ทฏ Thus, L.H.L โ R.H.L โ f is discontinuous at ๐ =๐ Case 2 Let x = c , where c < 1 ๐ ๐ฅ๏ทฏ=๐ฅ+5 f is continuous at x = c if if lim๏ทฎxโ๐๏ทฏ ๐ ๐ฅ๏ทฏ=๐(๐) Thus, lim๏ทฎxโ๐๏ทฏ ๐ ๐ฅ๏ทฏ=๐ ๐๏ทฏ โ f is continuous for ๐ฅ =๐ less than 1. โ f is at continuous for all real numbers less than 1. Case 3 Let x = c (where c > 1) ๐ ๐ฅ๏ทฏ= ๐ฅโ5 f is continuous at x = c if lim๏ทฎxโ๐๏ทฏ ๐ ๐ฅ๏ทฏ=๐(๐) Thus lim๏ทฎxโ๐๏ทฏ ๐ ๐ฅ๏ทฏ=๐(๐) โ f is continuous for ๐ฅ =๐ ( c is greater than 1) โ f is continuous at all real numbers greater than 1. Hence, only x = 1 is point of discontinuity. โ f is continuous at all real point. Thus, f is continuous for all ๐โ๐โ{๐}.
Ex 5.1 ,2
Ex 5.1 ,3
Ex 5.1 ,4
Ex 5.1 ,5
Ex 5.1 ,6
Ex 5.1 ,7
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12
Ex 5.1, 13 Important You are here
Ex 5.1, 14
Ex 5.1, 15
Ex 5.1, 16 Important
Ex 5.1, 17
Ex 5.1, 18 Important
Ex 5.1, 19
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22
Ex 5.1, 23
Ex 5.1, 24
Ex 5.1, 25
Ex 5.1, 26
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author