Ex 5.6, 11 - Show that dy/dx = - y/x, if x = root a sin-1 t

Ex 5.6, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.6, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.6, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 4
Ex 5.6, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 5


Transcript

Ex 5.6, 11 If π‘₯=√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) , y=√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ), show that 𝑑𝑦/𝑑π‘₯ = βˆ’ 𝑦/π‘₯Here 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/𝑑𝑑)/(𝑑π‘₯/𝑑𝑑) Calculating π’…π’š/𝒅𝒕 𝑦 = √(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ) 𝑑𝑦/𝑑𝑑 " "= 𝑑(√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ))/𝑑𝑑 𝑑𝑦/𝑑𝑑 " "= 1/(2√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )) . 𝑑(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )/𝑑𝑑 𝑑𝑦/𝑑𝑑 " "= 1/(2√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )) . π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑). logβ‘π‘Ž Γ— 𝑑(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑)/𝑑𝑑 𝑑𝑦/𝑑𝑑 " "= 1/(2√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )) . π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑). logβ‘π‘Ž Γ— (βˆ’1)/√(1 βˆ’ 𝑑^2 ) (𝐴𝑠" " 𝑑(π‘Ž^π‘₯ )/π‘‘πœƒ=π‘Ž^π‘₯.logβ‘π‘Ž ) 𝑑𝑦/𝑑𝑑 " "= (βˆ’ π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ". " logβ‘π‘Ž" " )/(2√(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ) . √(1 βˆ’ 𝑑^2 )) Calculating 𝒅𝒙/𝒅𝒕 π‘₯=√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) 𝑑π‘₯/𝑑𝑑 = 𝑑(√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ))/𝑑𝑑 𝑑π‘₯/𝑑𝑑 = 1/(2√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )) Γ— 𝑑(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )/𝑑𝑑 𝑑π‘₯/𝑑𝑑 = 1/(2√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )) Γ— π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑). logβ‘π‘Ž . 𝑑(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑)/𝑑𝑑 𝑑π‘₯/𝑑𝑑 = 1/(2√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )) Γ— π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑). logβ‘π‘Ž . 1/√(1 βˆ’ 𝑑^2 ) 𝑑π‘₯/𝑑𝑑 = " " π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑)/(2√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )) Γ— logβ‘π‘Ž/√(1 βˆ’ 𝑑^2 ) 𝑑π‘₯/𝑑𝑑 = " " (√(𝒂^(γ€–π’”π’Šπ’γ€—^(βˆ’πŸ) 𝒕) ) . π’π’π’ˆβ‘π’‚)/(𝟐√(𝟏 βˆ’ 𝒕^𝟐 )) Finding π’…π’š/𝒅𝒙 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/𝑑𝑑)/(𝑑π‘₯/𝑑𝑑) 𝑑𝑦/𝑑π‘₯ = ((βˆ’ √(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ) . logβ‘π‘Ž" " )/(2√(1 βˆ’ 𝑑^2 )))/((√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) . logβ‘π‘Ž)/(2√(1 βˆ’ 𝑑^2 ))) 𝑑𝑦/𝑑π‘₯ = (βˆ’ √(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) ) . βˆ’ logβ‘π‘Ž" " )/(2√(1 βˆ’ 𝑑^2 )) Γ— (2√(1 βˆ’ 𝑑^2 ))/(√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) . logβ‘π‘Ž ) 𝑑𝑦/𝑑π‘₯ = (βˆ’βˆš(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )⁑)/√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) Γ— (logβ‘π‘Ž Γ— 2√(1 βˆ’ 𝑑^2 ))/(logβ‘π‘Ž Γ— 2√(1 βˆ’ 𝑑^2 )) 𝑑𝑦/𝑑π‘₯ = (βˆ’βˆš(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )⁑)/√(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) ) π’…π’š/𝒅𝒙 = (βˆ’π’šβ‘)/𝒙 Hence proved. 𝐴𝑠 √(π‘Ž^(γ€–π‘π‘œπ‘ γ€—^(βˆ’1) 𝑑) )=𝑦 √(π‘Ž^(〖𝑠𝑖𝑛〗^(βˆ’1) 𝑑) )=π‘₯

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.