web analytics

Ex. 5.2 i.jpg

Ex. 5.2 ii.jpg
Ex. 5.2 iii.jpgEx. 5.2 iv.jpg

  1. Class 12
  2. Important Question for exams Class 12
Ask Download

Transcript

Ex 5.2, 10 (Introduction) Greatest Integer Function F(x) = [x] Example: [1] = 1 [1.2] = 1 [1.9999] = 1 [2] = 2 [2.01] = 2 [20001] = 2 ∴ , [1 + h] = 1 [1 − h] = 0 [1] = 1 Ex 5.2, 10 Prove that the greatest integer function defined by f (x) = [x], 0 < x < 3 is not differentiable at 𝑥=1 𝑎𝑛𝑑 𝑥= 2. f (x) = [x] At x = 1 f (x) is differentiable at x = 1 y if L H D = R H D (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑥) − 𝑓(𝑥 − ℎ))/ℎ = (𝑙𝑖𝑚)┬(h→0) (𝑓(1) − 𝑓(1 − ℎ))/ℎ = (𝑙𝑖𝑚)┬(h→0) ([1] − [(1 − ℎ)])/ℎ = (𝑙𝑖𝑚)┬(h→0) (1 − 0)/ℎ = (𝑙𝑖𝑚)┬(h→0) 1/ℎ = 1/0 = Not defined (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ = (𝑙𝑖𝑚)┬(h→0) (𝑓(1 + ℎ) − 𝑓(1))/ℎ = (𝑙𝑖𝑚)┬(h→0) ([(1 + ℎ)] − [1])/ℎ = (𝑙𝑖𝑚)┬(h→0) (1 − 1)/ℎ = (𝑙𝑖𝑚)┬(h→0) 0/ℎ = (𝑙𝑖𝑚)┬(h→0) 0 = 0 Since LHD ≠ RHD ∴ f(x) is not differentiable at x = 1 Hence proved (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑥) − 𝑓(𝑥 − ℎ))/ℎ = (𝑙𝑖𝑚)┬(h→0) (𝑓(2) − 𝑓(2 − ℎ))/ℎ = (𝑙𝑖𝑚)┬(h→0) ([2] − [(2 − ℎ)])/ℎ = (𝑙𝑖𝑚)┬(h→0) (2 − 1)/ℎ = (𝑙𝑖𝑚)┬(h→0) 1/ℎ = 1/0 = Not defined (𝑙𝑖𝑚)┬(h→0) (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ = (𝑙𝑖𝑚)┬(h→0) (𝑓(2 + ℎ) − 𝑓(2))/ℎ = (𝑙𝑖𝑚)┬(h→0) ([(2 + ℎ)] − [2])/ℎ = (𝑙𝑖𝑚)┬(h→0) (2 − 2)/ℎ = (𝑙𝑖𝑚)┬(h→0) 0/ℎ = (𝑙𝑖𝑚)┬(h→0) 0 = 0 Since LHD ≠ RHD ∴ f(x) is not differentiable at x = 2 Hence proved

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
  • Ahmed Raza's image

    Screenshot_2017-06-08-19-46-59.jpg class 12  , ex. 5.2 - Question no. 10


    In the RHD please can the solution of RHD 3rd step [1 h]

    How we solved it and why the solution is differentfrom the LHD solution of [1-h]

    View answer
Jail