web analytics

Ex 11.2, 17 - Shortest distance r = (1-t)i + (t-2)j + (3-2t)k - Shortest distance between two skew lines

Slide52.JPG
Slide53.JPG

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise
Ask Download

Transcript

Ex 11.2, 17 Find the shortest distance between the lines whose vector equations are 𝑟﷯ = (1 − t) 𝑖﷯ + (t − 2) 𝑗﷯ + (3 − 2t) 𝑘﷯ and 𝑟﷯ = (s + 1) 𝑖﷯ + (2s – 1) 𝑗﷯ – (2s + 1) 𝑘﷯ Shortest distance between lines with vector equations 𝑟﷯ = 𝑎1﷯ + 𝜆 𝑏1﷯ and 𝑟﷯ = 𝑎2﷯ + 𝜇 𝑏2﷯ is ( 𝑏1﷯× 𝑏2﷯).( 𝑎2﷯ − 𝑎1﷯)﷮ 𝑏1﷯ × 𝑏2﷯﷯﷯﷯ Now, ( 𝒂𝟐﷯ − 𝒂﷮𝟏﷯﷯) = (1 𝑖﷯ − 1 𝑗﷯ − 1 𝑘﷯) − (1 𝑖﷯ − 2𝑗 + 3 𝑘﷯) = (1 − 1) 𝑖﷯ + ( − 1 + 2) 𝑗﷯ + ( − 1 − 3) 𝑘﷯ = 0 𝒊﷯ + 1 𝒋﷯ − 4 𝒌﷯ 𝒃﷮𝟏﷯﷯× 𝒃﷮𝟐﷯﷯ ﷯ = 𝑖﷯﷮ 𝑗﷯﷮ 𝑘﷯﷮ −1﷮1﷮ −2﷮1﷮2﷮ −2﷯﷯ = 𝑖﷯ 1×− 2﷯ − 2×− 2﷯﷯ − 𝑗﷯ −1×−2﷯ 1×− 2﷯﷯ + 𝑘﷯ − 1×2﷯− 1×1﷯﷯ = 𝑖﷯ − 2+4﷯ − 𝑗﷯ 2+2﷯ A + 𝑘﷯ −2−1﷯ = 2 𝒊﷯ − 4 𝒋﷯ − 3 𝒌﷯ Magnitude of ( 𝑏1﷯× 𝑏2﷯) = ﷮22+(− 4)2+(− 3)2﷯ 𝒃𝟏﷯× 𝒃𝟐﷯﷯ = ﷮4+16+9﷯ = ﷮𝟐𝟗﷯

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail