** Example 15 **

Last updated at March 11, 2017 by Teachoo

Last updated at March 11, 2017 by Teachoo

Transcript

Example 15 If x, y, z are different and Δ = xx21+x3yy21+y3zz21+z3 = 0 , then show that 1 + xyz = 0 Solving ∆ = xx21+x3yy21+y3zz21+z3 Here, expanding elements of C3 into two determinants = xx21yy21zz21 + xx2x3yy2y3zz2z3 = xx21yy21zz21 + xx2x3yy2y3zz2z3 = xx21yy21zz21+ xyz 1xx21yy21zz2 = (−1) x1x2y1y2z1z2 + xyz 1xx21yy21zz2 = (−1)(−1) 1xx21yy21zz2 + xyz 1xx21yy21zz2 = 1xx21yy21zz2 + xyz 1xx21yy21zz2 = 1xx21yy21zz2 (1 + xyz) Using R2 → R2 – R1 and R3 → R3 – R1 = 1xx2𝟏 −𝟏y−xy2 −x2𝟏−𝟏z−xz2 −x2 (1+ xyz) = 1xx2𝟎(y−x) y −x(y+x)𝟎(z−x) z −x(z+x) (1+ xyz) Taking common factor (y – x) from R2 & (z – x) from R3 = (1 + xyz) (y – x) (z – x) 1xx201y+x01z+x Expanding determinant = (1 + xyz) (y – x) (z – x) (z – y) 1 1𝑦+𝑥1𝑧+𝑥 – 0 𝑥𝑥21𝑧+𝑥 + 0 𝑥𝑥21𝑦+𝑥 = (1 + xyz) (y – x) (z – x) (1 (y + x) – (y + x) + 0 + 0) = (1 + xyz) (y – x) (z – x) (z + y – y – x) = (1 + xyz) (y – x) (z – x) (z – y) ∴ ∆ = (1 + xyz) (y – x) (z – x) (z – y) Since ∆ = 0 given (1 + xyz) (y – x) (z – x) (z – y) = 0 Since it is given that x, y, z all are different, i.e., y – x ≠ 0, z – x ≠ 0, z – y ≠ 0, So, only Possibility is (1 + xyz) = 0 Hence Proved

Ex 4.1, 7
Important

Example 14 Important

Example 15 Important You are here

Example 16 Important

Ex 4.2, 7 Important

Ex 4.2, 8 Important

Ex 4.2, 11 Important

Ex 4.2, 12 Important

Ex 4.2, 13 Important

Ex 4.2, 14 Important

Ex 4.2, 15 Important

Example 18 Important

Ex 4.3, 2 Important

Ex 4.3, 3 Important

Example 24 Important

Example 26 Important

Ex 4.5, 10 Important

Ex 4.5, 15 Important

Ex 4.5, 18 Important

Ex 4.6, 13 Important

Ex 4.6, 15 Important

Ex 4.6, 16 Important

Example 32 Important

Example 34 Important

Misc. 2 Important

Misc 11 Important

Misc. 15 Important

Misc. 16 Important

Misc. 19 Important

Important Question for exams Class 12

- Chapter 1 Class 12 Relation and Functions
- Chapter 2 Class 12 Inverse Trigonometric Functions
- Chapter 3 Class 12 Matrices
- Chapter 4 Class 12 Determinants
- Chapter 5 Class 12 Continuity and Differentiability
- Chapter 6 Class 12 Application of Derivatives
- Chapter 7 Class 12 Integrals
- Chapter 8 Class 12 Application of Integrals
- Chapter 9 Class 12 Differential Equations
- Chapter 10 Class 12 Vector Algebra
- Chapter 11 Class 12 Three Dimensional Geometry
- Chapter 12 Class 12 Linear Programming
- Chapter 13 Class 12 Probability

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.