# Example 26

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Example 26 If A = [■8( cos" θ" &sin" θ" @−sin "θ" &cos" θ" )] , then prove that An = [■8(cos n"θ" &sin n"θ" @−sin "nθ" &cos n"θ" )],n ∈ N. We shall prove the result by using mathematical induction. Step 1: Let P(n) : If A = [■8(cos "θ" &sin" θ" @−sin "θ" &cos" θ" )] then An = [■8(cos n"θ" &sin n"θ" @−sin" nθ" &cos n"θ" )] ,n ∈ N. Step 2: Prove for n = 1 For n = 1 L.H.S = A1 = A = [■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )], R.H.S = [■8(cos" 1θ" &sin "1θ" @−sin 1"θ" &cos "1θ" )] =[■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )] L.H.S = R.H.S ∴ P(n) is true for n = 1 Step 3: Assume P(k) to be true and then prove P(k+1) is true Assume that P (k) is true P(k) : If A = [■8(cos "θ" &sin "θ" @−sin "θ" &cos "θ" )], then Ak = [■8(cos "kθ" &sin k"θ" @−sin k"θ" &cos k"θ" )] , ` where k ∈ N We will have to prove that P( k +1) is true P(k+1) : If A = [■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )] , then we need to prove Ak+1 = [■8(cos" (k+1)θ" &sin" (k+1)θ" @−sin" (k+1)θ" &cos" (k+1)θ" )] Taking L.H.S Ak+1 = Ak . A = [■8(cos "kθ" &sin k"θ" @−sin k"θ" &cos k"θ" )] [■8(cos "θ" &sin "θ" @−sin "θ" &cos" θ" )] =[■8(cos" kθ" (cos" θ" )+sin k"θ" (−sin" θ)" &cos kθ(sin "θ)" +sin kθ(cos" θ" )@−sin" kθ" (cos "θ" )+cos k"θ" (−sin "θ)" &−sin "kθ(" sin "θ" )+ cos k"θ" (cos "θ" ))] = [■8(cos" kθ" cos" θ" −sin k"θ" sin" θ" &cos kθ sin "θ" +sin kθ cos" θ" @−sin" kθ" cos "θ" −cos k"θ" sin "θ" &−sin "kθ" sin "θ" + cos k"θ" cos "θ" )] = [■8(cos" kθ" cos" θ" −sin k"θ" sin" θ" &sin "θ" cos kθ +sin kθ cos" θ" @−(sin" kθ" cos "θ" +cos k"θ" sin "θ)" &cos k"θ" cos "θ" − sin "kθ" sin "θ" )] = [■8(cos"(" k"θ + θ)" &sin "(" k"θ + θ)" @−sin" (" k"θ + θ)" &"cos (" k"θ + θ)" )] = [■8(cos"(" k" + 1)θ" &sin" (" k" + 1)θ" @−sin "(" k" + 1)θ" &"cos (" k" + 1)θ" )] = R.H.S Thus P (k+1) is true ∴ By the principal of mathematical induction , P(n) is true for n ∈ N Hence, if A = [■8(cos "θ" &sin" θ" @−sin "θ" &cos" θ" )] then An = [■8(cos n"θ" &sin n"θ" @−sin" nθ" &cos n"θ" )] for all n ∈ N.

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18 Important

Example 19 Important

Example 20

Example 21

Example 22 Important

Example 23

Example 24

Example 25

Example 26 You are here

Example 27 Important

Example 28 Important

About the Author

CA Maninder Singh

CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .