web analytics

Ex 9.1, 14 - The Fibonacci sequence is 1 = a1 = a2 - Finding Sequences

  1. Chapter 9 Class 11 Sequences and Series
  2. Serial order wise
Ask Download

Transcript

Ex9.1 , 14 The Fibonacci sequence is defined by 1 = a1 = a2 and an = an–1+an–2,n > 2 . Find 𝑎_(𝑛+1)/an, for n = 1,2,3,4,5, Lets first calculate a1 , a2 , a3 , a4 , a5 & a6 It is given that a1 = 1 a2 = 1 For a3 , a4 , a5 & a6 we need to use an = an–1 + an–2 , n > 2 an = an-1 + an-2 , n > 2 Putting n = 3 in (1) a3 = a3 – 1 + a3 – 2 = a2 + a1 = 1 + 1 = 2 Putting n = 4 in (1) a4 = a4 – 1 + a4 – 2 a4 = a3 + a2 = 2 + 1 = 3 an = an-1 + an-2 , n > 2 Putting n = 5 in (1) a5 = a5 – 1 + a5 – 2 a5 = a4 + a3 = 3 + 2 = 5 Putting n = 6 in (1) a6 = a6 – 1 + a6 – 2 a6 = a5 + a4 = 5 + 3 = 8 Now, a1 = 1 , a2 = 1, a3 = 2 , a4 = 3 , a5 = 5 , a6 = 8

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail