web analytics

Ex 3.3, 23 - Prove tan 4x = 4 tan x (1 - tan2 x) / 1 - 6tan2x - 2x 3x formula - Proving

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise
Ask Download

Transcript

Ex 3.3, 23 Prove that tan⁑4π‘₯ = (4 tan⁑〖π‘₯ (1βˆ’tan2π‘₯)γ€—)/(1 βˆ’ 6 tan2 π‘₯+tan4 π‘₯) Taking L.H.S. tan 4x = (2 tan⁑2x)/(1 βˆ’ tan2 2x) tan 4x = 2((2 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯))/(1 βˆ’ ((2 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯))^2 ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((2 tan⁑π‘₯ )^2/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/(1 βˆ’((4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (((4 tan⁑π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)))/((((1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 βˆ’ 4 γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/(1 βˆ’ π‘‘π‘Žπ‘›2 π‘₯)^2 ) ) = (4 tan⁑π‘₯)/(1 βˆ’ tan2⁑π‘₯ ) Γ— ((1 βˆ’ tan2⁑〖π‘₯)2γ€—)/((1 βˆ’π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’4 tan2⁑π‘₯ ) = (4 tan⁑π‘₯)/1 Γ— ((1 βˆ’ tan2⁑〖π‘₯)γ€—)/((1 βˆ’π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’4 tan2⁑π‘₯ ) = (4 tan⁑〖π‘₯ (1 βˆ’π‘‘π‘Žπ‘›2 π‘₯γ€—))/((1 βˆ’tan2⁑π‘₯ )2 βˆ’4 tan⁑2π‘₯ ) Using (a – b)2 = a2 +b2 – 2ab = (4 tan⁑〖π‘₯ ( 1 βˆ’tan2⁑π‘₯)γ€—)/(( (1)2+(π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’2 Γ— 1 Γ— π‘‘π‘Žπ‘›2 π‘₯) βˆ’4 π‘‘π‘Žπ‘›2 π‘₯) = (4 tan⁑〖π‘₯ ( 1 βˆ’tan2⁑π‘₯)γ€—)/(( (1)2+(π‘‘π‘Žπ‘›2 π‘₯)2 βˆ’2 Γ— 1 Γ— π‘‘π‘Žπ‘›2 π‘₯) βˆ’4 π‘‘π‘Žπ‘›2 π‘₯) = (4 tan⁑〖π‘₯ ( 1 βˆ’tan2⁑π‘₯)γ€—)/(1 + tan⁑〖4 π‘₯ βˆ’ 2 tan2⁑〖π‘₯ βˆ’4 tan2⁑π‘₯ γ€— γ€— ) = (4 tan⁑〖π‘₯ ( 1 βˆ’ tan2⁑〖π‘₯ )γ€— γ€—)/(1 + tan4⁑〖π‘₯ βˆ’6 π‘‘π‘Žπ‘›4 π‘₯γ€— ) = R.H.S. Hence L.H.S. = R.H.S. Hence proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail