
Last updated at May 29, 2018 by Teachoo
Transcript
Ex3.3, 18 Prove that 〖sin x − 〗siny /(𝑐𝑜𝑠x + 𝑐𝑜𝑠y ) = tan (x − y)/2 Solving L.H.S 〖sin x − 〗siny /(𝑐𝑜𝑠x + 𝑐𝑜𝑠y ) We Know that sin x – sin y = 2 cos ( (𝑥 + 𝑦 )/2) sin ( (𝑥 − 𝑦 )/2) & cos x + cos y = 2 cos ( (𝑥 + 𝑦 )/2) cos ( (𝑥 − 𝑦 )/2) 〖sin x − 〗siny /(𝑐𝑜𝑠x + 𝑐𝑜𝑠y ) = 〖2 𝑐𝑜𝑠 ((𝑥 + 𝑦)/2)〗〖 𝑠𝑖𝑛〖 ((𝑥 − 𝑦)/2)〗 〗/(2 𝑐𝑜𝑠〖 ((𝑥 + 𝑦)/2)〗 𝑐𝑜𝑠〖 ((𝑥 − 𝑦)/2)〗 ) = 𝑠𝑖𝑛〖" " ((𝑥 − 𝑦 )/2)〗/(𝑐𝑜𝑠〖 ((𝑥 − 𝑦)/2)〗 ) = tan (𝑥 − 𝑦 )/2 = R.H.S Hence L.H.S. = R.H.S. Hence proved
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 Important
Ex 3.3, 6
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16
Ex 3.3, 17
Ex 3.3, 18 Important You are here
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
About the Author