Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 3.3, 7 Prove that: (tan"(" π/4 " + " π₯")" )/(tan"(" Ο/4 " β " π₯")" ) = ((1+ tan" " π₯)/(1β tan" " π₯))^2 Solving L.H.S. (tanβ‘ (π/4 + π₯) )/tanβ‘(π/4 β π₯) Calculating L.H.S tanβ‘γ(π/4 + π₯)γ/tanβ‘γ( π/4 βπ₯)γ = ((1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ))/((1 β tanβ‘x)/(1 + tanβ‘x )) = (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) Γ (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) = (1 + π‘ππβ‘π₯ )2/((1β π‘ππβ‘γπ₯)2γ ) = R.H.S Hence proved

Ex 3.3, 1

Ex 3.3, 2

Ex 3.3, 3

Ex 3.3, 4 Important

Ex 3.3, 5 Important

Ex 3.3, 6

Ex 3.3, 7 You are here

Ex 3.3, 8 Important

Ex 3.3, 9

Ex 3.3, 10

Ex 3.3, 11 Important

Ex 3.3, 12

Ex 3.3, 13

Ex 3.3, 14

Ex 3.3, 15

Ex 3.3, 16

Ex 3.3, 17

Ex 3.3, 18 Important

Ex 3.3, 19

Ex 3.3, 20

Ex 3.3, 21 Important

Ex 3.3, 22

Ex 3.3, 23 Important

Ex 3.3, 24

Ex 3.3, 25

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.