web analytics

Ex 10.2, 9 - In fig, XY and X′Y′ are two parallel tangents - Theorem 10.2: Equal tangents from external point (proof type)

  1. Chapter 10 Class 10 Circles
  2. Serial order wise
Ask Download

Transcript

Ex 10.2,9 In figure, XY and X′Y′ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X′Y′at B. Prove that ∠AOB = 90°. Given : XY is a tangent at point P and X’Y’ is a tangent at point Q And XY ∥ X’Y’ AB is a tangent at point C To prove: ∠ AOB = 90° Proof: Join OC For tangent AB & Radius OC OC ⊥ AB So, ∠ ACO = ∠ BCO = 90° In Δ AOP & Δ AOC OP = OC AP = AC OA = OA ∴ Δ AOC ≅ Δ AOP So, ∠ AOP= ∠ AOC Now In Δ BOC & Δ BOQ OC = OQ BC = BQ OB = OB ∴ Δ BOC ≅ Δ BOQ So, ∠ BOC = ∠ BOQ For line PQ ∠ AOP + ∠ AOC + ∠ BOC + ∠ BOQ = 180° ∠ AOC + ∠ AOC + ∠ BOC + ∠ BOC = 180° 2∠ AOC + 2∠ BOC = 180° 2(∠ AOC + ∠ BOC) = 180° ∠ AOC + ∠ BOC = (180°)/2 ∠ AOC + ∠ BOC = 90° ∠ AOB = 90° Hence proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail