Last updated at June 23, 2017 by Teachoo

Transcript

Ex 6.5,3 In figure, ABD is a triangle right angled at A and AC β₯ BD. Show that AB2 = BC . BD Given: ABD is a triangle right angled at A . & AC β₯ π΅π· To prove: AB2 = BC . BD i.e. π΄π΅/π΅π· = π΅πΆ/π΄π΅ Proof: From theorem 6.7, If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the Perpendicular are similar to the whole triangle and to each other So, Ξ BAD βΌ Ξ ACB If two triangles are similar , then the ratio of their corresponding sides are equal π΅π΄/π΅πΆ=π΅π·/π΅π΄ BA Γ BA = BD Γ BC BA2 = BD Γ BC i.e. AB2 = BD Γ BC Hence proved Ex 6.5,3 In figure, ABD is a triangle right angled at A and AC β₯BD. Show that (ii) AC2 = BC . DC We need to prove: AC2 = BC . DC i.e. π΄πΆ/π·πΆ = π΅πΆ/π΄πΆ From theorem 6.7, If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the Perpendicular are similar to the whole triangle and to each other So, Ξ BCA βΌ Ξ ACD If two triangles are similar , then the ratio of their corresponding sides are equal π΅πΆ/π΄πΆ=πΆπ΄/πΆπ· BC Γ CD = AC Γ CA BC Γ CD = AC2 AC2 = BC Γ CD Hence proved Ex 6.5,3 In figure, ABD is a triangle right angled at A and AC β₯BD. Show that (iii) AD2 = BD . CD We need to prove: AD2 = BD . CD i.e. π΄π·/πΆπ· = π΅π·/π΄π· From theorem 6.7, If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the Perpendicular are similar to the whole triangle and to each other So, Ξ DAB βΌ Ξ DCA If two triangles are similar , then the ratio of their corresponding sides are equal π·π΄/π·πΆ=π·π΅/π·π΄ DA Γ DA = DB Γ DC DA2 = DB Γ DC AD2 = BD Γ CD Hence proved

Chapter 6 Class 10 Triangles

Serial order wise

About the Author

CA Maninder Singh

CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .